Какие объекты относятся к радиоактивным. Радиационно опасные объекты в россии. Исследовательские ядерные реакторы

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами: радио- активные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении, или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма- такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвер- гается человек за счет естественной радиации.

Проблема радиационной обстановки очень актуальна на сегодняшний день. Проблема с выбросами радиоактивных отходов. Очень много вредных радиоактивных веществ выбрасываются в моря, реки и т.д. После аварий на АЭС иногда даже нет специальных контейнеров, в которых можно хранить радиоактивные вещества (в Чернобыле такие контейнеры строили уже после аварии, подвергая тем самым персонал пере- облучению). Крупные аварии: Чернобыльская АЭС, Уральская АЭС. Естественно, что эти аварии в большей мере подрывают веру многих людей в безопасность использования АЭС. Очень большой процент погибших и навсегда искалеченных людей. Но не одни АЭС являются источниками повышенной радиоактивной опасности. О них и пойдет далее речь.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивным и осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками. Радиационно опасные объекты - предприятия, при аварии на которых или при разрушении которых могут произойти массовые радиационные поражения людей, животных, растений и радиоактивное заражение окружающей природной среды.

К ним относятся:

1) Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;

2) Научно – исследовательские и проектные институты, имеющие ядерные установки;

3) Транспортные ядерные энергетические установки;

4) Военные объекты;

Во избежание аварий на радиационно опасных объектах необходимо соблюдать технику безопасности. Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

1. Не превышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, и являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. К концу 1984 года в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 13% суммарной мощности всех источников электроэнергии. Впоследствии каждые 5 лет эта мощность удваивалась, однако, сохранится ли такой темп роста в будущем, неясно.

Причины тому экономический спад, реализация мер по экономии электроэнергии, а также противодействие со стороны общественности.

Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.

Доза облучения от ядерного реактора зависит от вpемени и pасстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически бесконечно. Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В последнее время наблюдается тенденция к уменьшению количества выбросов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствованиями, частично с введением более строгих мер по радиационной защите. В мировом масштабе примерно 10% использованного на АЭС ядерного топлива направляется на переработку для извлечения урана и плутония с целью повторного их использования.

Взрыв или повреждение ядерного реактора несет с собой огромную экологическую катастрофу. Не смотря на то, что при взрыве не высвобождается огромного количества энергии, как при атомном взрыве последствия в результате заражения будут не меньшими. Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека). При одноразовом выбросе радиоактивных веществ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоактивного облака имеет вид эллипса.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения радиоактивных веществ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности.

Есть мнение, что «шум», поднятый вокруг аварии на ЧАЭС жур­налистами и политиками, как фактор стресса и отрицательных эмо­ций нанес здоровью людей больший ущерб, чем радиационный выб­рос. Но, возможно, что АЭС не так опасны, как мы предполагаем. Известно что, с начала использования этих электростанций произошло много аварий и катастроф. Самая страшная катастрофа на АЭС произошла в 1986 в Чернобыле.

Авария повлекла за собой значительные отрицательные психологи­ческие последствия, выраженные в повышенном чувстве тревоги и возникновении стресса из-за постоянного ощущения весьма сильной неопределенности, что наблюдалось и за пределами загрязненных районов. На основании оцененных в рамках Проекта доз и принятых в настоящее время оценок радиационного риска можно сказать, что будущее увеличение числа раковых заболеваний или наследственных изменений по сравнению с естественным уровнем будет трудно оп­ределить даже при широкомасштабных и хорошо организованных дол­госрочных эпидемиологических исследованиях. Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рам­ках Проекта. По сравнению с контрольными районами не было обна­ружено достоверных отличий числа и видов психологических нару­шений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменений.

Радиационно опасные объекты (РОО) — это объекты, при аварии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации значения, что может привести к массовому облучению людей, сельскохозяйственных животных и растений, а также радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся:

Атомные станции;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;

Предприятия по изготовлению ядерного топлива ;

Научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;

Транспортные ядерные энергетические установки;

Военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ,"которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

Радиационная авария — потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких аварий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра они могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Обнаружить радиоактивные вещества можно только с помощью специальных приборов (рентгенметров и дозиметров ). Описание состава и порядка пользования рентгенметром ДП-5В приведено в главе 2.

Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых жизненных процессов в организме человека. Человек в момент воздействия радиоактивных излучений не получает телесных повреждений и не испытывает боли. Однако в результате воздействия радиоактивных излучений у пораженных людей может развиться лучевая болезнь, приводящая к летальному исходу.

При радиоактивном заражении живой организм в течение нескольких секунд получает дозу проникающей радиации, а доза внешнего облучения накапливается им в течение всего времени пребывания на зараженной территории.

Накопление дозы внешнего облучения в организме происходит неравномерно. Большая ее часть накапливается в первые часы и дни после выпадения радионуклидов , когда уровень радиации наиболее высок. В первые сутки накапливается 50% суммарной дозы до полного распада радиоактивных веществ, за четверо суток — 60%. Поэтому особенно важно обеспечить защиту от радиации в первые четверо суток.


Доза облучения , полученная живым организмом в течение четырех суток подряд (в любом распределении по дням) называется однократной. При продолжительном облучении в организме наряду с процессами поражения происходят и процессы восстановления. В связи с этим суммарная доза облучения, вызывающая один и тот же эффект, при продолжительном многократном облучении более высокая, чем при однократном. Дозы, не приводящие к потере работоспособности при однократном и многократном облучении, следующие: однократная (в течение четырех суток) — 50 Р; многократная: в течение 10—30 суток — 100 Р, трех месяцев — 200 Р, в течение года — 300 Р.

Превышение указанной дозы вызывает заболевание лучевой болезнью. Она протекает, как правило, в острой форме и в зависимости от однократной дозы облучения может быть разной степени тяжести: легкой (100-200 Р), средней (200-400 Р), тяжелой (400-600 Р) и крайне тяжелой (свыше 600 Р).

Лучевая болезнь легкой степени характеризуется недомоганием, общей слабостью, головными болями, небольшим снижением числа лейкоцитов в крови. Все пораженные выздоравливают без лечения.

Лучевая болезнь средней тяжести проявляется в более тяжелом недомогании, расстройстве функций нервной системы, рвоте. Число лейкоцитов снижается более чем наполовину. При отсутствии осложнений люди выздоравливают через несколько месяцев, при осложнениях может наступить гибель до 20% пораженных.

При лучевой болезни тяжелой степени отмечаются сильные головные боли, рвота, понос, кровоизлияния в слизистые оболочки и кожу, иногда потеря сознания. Число лейкоцитов и эритроцитов в периферической крови резко снижается, появляются осложнения. Без лечения летальный исход наблюдаются в 50% случаев.

Лучевая болезнь крайне тяжелой степени без лечения заканчивается смертельным исходом в 80—100% случаев.

При наружном заражении радиоактивными веществами наблюдаются «бета-ожоги » кожных покровов. У людей наиболее часто отмечаются поражения кожи на руках, голове, в области шеи, поясницы; у животных — на спине, а при поедании травы с загрязненного пастбища — на морде. Тяжесть поражения зависит от продолжительности контакта радионуклидов с поверхностью тела человека, животного. Допустимая степень радиоактивного заражения поверхности тела человека — 20 мР/ч, животного — 100 мР/ч при контакте в течение суток.

Внутреннее поражение людей радиоактивными веществами может произойти при вдыхании воздуха и приеме пищи и воды. Большая часть радионуклидов проходит кишечник транзитом и выделяется из организма. При этом они вызывают радиационное поражение слизистой оболочки желудочно-кишечного тракта, что приводит к расстройству функций органов пищеварения. Другая часть изотопов, биологически наиболее активных, к которым в первую очередь относятся йод-131, стронций-90, цезий-137, обладает высокой радиотоксичнбстью и почти полностью всасывается в кишечник, распределяясь по органам и тканям организма.

Таким образом , при аварии на АЭС следует защищаться от двух видов облучения; внешнего и внутреннего. Первое возникает в результате воздействия на человека излучений, испускаемых радиоактивными веществами, выпавшими на земную поверхность. Второе — результат попадания радиоактивных веществ внутрь организма при вдыхании воздуха и приеме пищи и воды.

В случае аварии на АЭС и угрозе радиоактивного заражения местности подается предупредительный сигнал ГО «Внимание всем!» в виде сирен, прерывистых гудков предприятий и специальных транспортных средств. По радио и телевидению передается сообщение местных органов власти или ГО.

Противорадиационная защита включает в себя использование коллективных и индивидуальных средств защиты, соблюдение режима поведения на зараженной радиоактивными веществами территории, защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль и экспертизу заражения радиоактивными веществами продуктов питания и воды.

При сообщении о радиационной опасности необходимо выполнить следующие мероприятия:

Во-первых , укрыться в жилом доме или служебном помещении. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, кирпичного — в 10 раз, заглубленные укрытия (подвалы) с деревянным покрытием — в 7 раз, а с кирпичным или бетонным покрытием — в 40—100 раз.

Во-вторых , принять меры от проникновения в помещение (дом) радиоактивных веществ с воздухом, для чего закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.

В-третьих , создать запас питьевой воды и перекрыть краны. Накрыть колодцы пленкой или крышкой.

В-четвертых , провести профилактический прием препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой один раз в день в течение семи суток по одной таблетке (0,125 г) на один прием. Водно-спиртовой раствор йода нужно принимать после еды 3 раза в день в течение семи суток по три-пять капель на стакан воды. Важно знать, что прием стабильного йода за шесть и менее часов до подхода радиоактивного облака или выпадания радиоактивных веществ обеспечивает полную защиту. Если принять его в начале облучения, то эффективность несколько уменьшается, а через 6 ч снижается наполовину.

В-пятых , подготовиться к возможной эвакуации.

В-шестых , постараться соблюдать следующие правила радиационной безопасности и личной гигиены:

Использовать в пищу только консервированное молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергшиеся радиоактивному загрязнению;

Не пить молоко от коров, которые продолжают пастись на загрязненных полях, и не употреблять овощи, которые росли в открытом грунте и были сорваны после начала поступления радиоактивных веществ в окружающую среду;

Не пить воду из открытых источников и водопровода;

Принимать пищу только в закрытых помещениях, при этом тщательно мыть руки с мылом перед едой и полоскать рот 0,5%-ным раствором питьевой соды;

Избегать длительных передвижений по загрязненной территории, не ходить в лес и воздержаться от купания в открытом водоеме;

Входя в помещение с улицы, оставлять «грязную» обувь на лестничной площадке или на крыльце.

В-седьмых , при передвижении по открытой местности защищать органы дыхания противогазом, респиратором, носовым платком, бумажной салфеткой или марлевой повязкой (их фильтрующая способность значительно повышается при смачивании водой). Для защиты кожи и волосяного покрова следует использовать защитные костюмы, а если их нет — любые предметы одежды (головные уборы, косынки, накидки, перчатки, резиновые сапоги).

В-восьмых , при оказании первой доврачебной помощи на территории радиоактивного заражения в первую очередь следует выполнять те мероприятия, от которых зависит сохранение жизни пораженного. Затем необходимо устранить или уменьшить внешнее гамма-облучение, для чего, используются защитные сооружения: убежища, заглубленные помещения, кирпичные, бетонные и другие здания. Чтобы предотвратить дальнейшее воздействие радиоактивных веществ на кожу и слизистые оболочку, проводят частичную санитарную обработку. Частичная санитарная обработка проводится путем обмывания чистой водой или обтирания влажными тампонами открытых участков кожи. Пораженному промывают глаза, дают прополоскать рот.

Затем, надев на пораженного респиратор, ватно-марлевую повязку или закрыв его рот и нос полотенцем, платком, шарфом, проводят частичную дезактивацию его одежды. При этом учитывают направление ветра, чтобы обметаемая с одежды пыль не попадала на других. При попадании радиоактивных веществ внутрь организма промывают желудок, дают адсорбирующие вещества (активированный уголь). При появлении тошноты принимают противорвотное средство. В целях профилактики инфекционных заболеваний рекомендуется принимать антибактериальные средства.

В-девятых , при эвакуации после прибытия в безопасный район необходимо пройти полную санитарную обработку и дозиметрический контроль. Санитарная обработка заключается в тщательном обмывании всего тела водой с мылом. Обычно она проводится в местных банях, душевых павильонах, санитарных пропускниках, на специально организованных для этого санитарно-обмывочных пунктах, а в теплое время года—и в незараженных проточных водоемах. Дозиметрический контроль осуществляется как перед началом санитарной обработки, так и после нее. Если результат оказался неудовлетворительным, санитарную обработку повторяют.

Одежда и обувь при этом подвергается частичной или полной дезактивации. Частичная дезактивация заключается в вытряхивании и выколачивании одежды и обуви с использованием щеток, веников, палок. Полная дезактивация одежды и обуви проводится на пунктах специальной обработки, оснащенных специальными установками и приборами. После дезактивации каждую вещь подвергают дозиметрическому контролю, и если окажется, что уровень загрязнения выше допустимых норм, работа проводится вторично. Следует отметить, что работа по дезактивации одежды и обуви проводится в надетых средствах защиты кожи и органов дыхания (противогазах, респираторах, ватно-марлевых повязках, защитных костюмах).

Продовольствие и вода также подлежат дезактивации. При этом в зависимости от степени заражения и характера радиоактивных веществ применяется тот или иной метод дезактивации — отстаивание, фильтрование, перегонка. Воду лучше всего пропустить через фильтры, изготавливаемые из подручных материалов — почвы различных видов, песка, мелкого гравия, угля. Продовольствие дезактивируется путем обработки или замены зараженной тары. Жидкие продукты дезактивируют путем длительного отстаивания, после чего верхний незараженный слой сливают в чистую посуду. Готовая пища (суп, каша и др.) дезактивации не подлежит, ее следует закопать в землю.

Конечно, эти рекомендации не исчерпывают всех мер противорадиационной защиты. Однако соблюдение перечисленных правил или хотя бы части из них позволяет значительно уменьшить риск неблагоприятных последствий аварий на объектах с выбросом радиоактивных веществ.

Вопросы и задания:

1. Какие объекты относятся к пожароопасным?

2. Перечислите основные и вторичные поражающие факторы пожара.

3. Какие принимают меры по предотвращению пожаров?

4. Какие в настоящее время используются средства пожарной сигнализации?

Дайте их краткую характеристику.

6. Какие противопожарные средства используются для тушения пожара? Кратко охарактеризуйте их.

8. Какие меры следует предпринять для того, чтобы покинуть горящее здание?

9. Что следует делать при невозможности покинуть горящее здание?

10. Как обследовать задымленное помещение?

11. Какие объекты относятся к взрывоопасным?

12. Охарактеризуйте основные поражающие факторы взрыва.

13. Какие принципы и методы предотвращения взрывов на производственных объектах вы знаете?

14. Какие мероприятия проводятся при ликвидации последствий взрывов?

15. Какие объекты относятся к гидродинамически опасным?

16. Что значит гидродинамическая авария?

17. Чем характеризуется катастрофическое затопление?

18. Как проводится эвакуация и спасение населения при катастрофическом затоплении?

19. Какие объекты относятся к химически опасным?

20. Дайте характеристику наиболее распространенным ядовитым веществам, используемым в промышленном производстве и экономике.

21. Каковы признаки отравления хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?

22. Перечислите основные меры защиты персонала и населения при авариях на ХОО.

23. Какой существует порядок действий персонала и населения при получении ими информации об аварии и опасности химического заражения?

24. Как повысить защитные свойства дома от проникновения ядовитых веществ?

25. Какие правила следует соблюдать при выходе из зоны химического заражения?

26. Как оказать первую помощь пострадавшим от воздействия хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?

27. Что представляет собой дегазация? Какие способы дегазации вы знаете и в чем их суть?

28. Какие объекты являются радиационно опасными?

29. Что значит радиационная авария? Каковы ее последствия?

30. Как защититься от внешнего и внутреннего облучения при аварии на АЭС?

32. Какие правила радиационной безопасности и личной гигиены следует соблюдать при радиоактивном заражении местности?

33. Что включает в себя частичная (полная) санитарная обработка и частичная (полная) дезактивация одежды и обуви и где они проводятся?

34. Какие существуют методы дезактивации продовольствия и воды?

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами: радио- активные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении, или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма- такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвер- гается человек за счет естественной радиации.

Проблема радиационной обстановки очень актуальна на сегодняшний день. Проблема с выбросами радиоактивных отходов. Очень много вредных радиоактивных веществ выбрасываются в моря, реки и т.д. После аварий на АЭС иногда даже нет специальных контейнеров, в которых можно хранить радиоактивные вещества (в Чернобыле такие контейнеры строили уже после аварии, подвергая тем самым персонал пере- облучению). Крупные аварии: Чернобыльская АЭС, Уральская АЭС. Естественно, что эти аварии в большей мере подрывают веру многих людей в безопасность использования АЭС. Очень большой процент погибших и навсегда искалеченных людей. Но не одни АЭС являются источниками повышенной радиоактивной опасности. О них и пойдет далее речь.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивным и осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками. Радиационно опасные объекты - предприятия, при аварии на которых или при разрушении которых могут произойти массовые радиационные поражения людей, животных, растений и радиоактивное заражение окружающей природной среды.



К ним относятся:

1) Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;

2) Научно – исследовательские и проектные институты, имеющие ядерные установки;

3) Транспортные ядерные энергетические установки;

4) Военные объекты;

Во избежание аварий на радиационно опасных объектах необходимо соблюдать технику безопасности. Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

1. Не превышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, и являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. К концу 1984 года в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 13% суммарной мощности всех источников электроэнергии. Впоследствии каждые 5 лет эта мощность удваивалась, однако, сохранится ли такой темп роста в будущем, неясно.

Причины тому экономический спад, реализация мер по экономии электроэнергии, а также противодействие со стороны общественности.

Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.

Доза облучения от ядерного реактора зависит от вpемени и pасстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически бесконечно. Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В последнее время наблюдается тенденция к уменьшению количества выбросов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствованиями, частично с введением более строгих мер по радиационной защите. В мировом масштабе примерно 10% использованного на АЭС ядерного топлива направляется на переработку для извлечения урана и плутония с целью повторного их использования.

Взрыв или повреждение ядерного реактора несет с собой огромную экологическую катастрофу. Не смотря на то, что при взрыве не высвобождается огромного количества энергии, как при атомном взрыве последствия в результате заражения будут не меньшими. Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека). При одноразовом выбросе радиоактивных веществ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоактивного облака имеет вид эллипса.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения радиоактивных веществ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности.

Есть мнение, что «шум», поднятый вокруг аварии на ЧАЭС жур­налистами и политиками, как фактор стресса и отрицательных эмо­ций нанес здоровью людей больший ущерб, чем радиационный выб­рос. Но, возможно, что АЭС не так опасны, как мы предполагаем. Известно что, с начала использования этих электростанций произошло много аварий и катастроф. Самая страшная катастрофа на АЭС произошла в 1986 в Чернобыле.

Авария повлекла за собой значительные отрицательные психологи­ческие последствия, выраженные в повышенном чувстве тревоги и возникновении стресса из-за постоянного ощущения весьма сильной неопределенности, что наблюдалось и за пределами загрязненных районов. На основании оцененных в рамках Проекта доз и принятых в настоящее время оценок радиационного риска можно сказать, что будущее увеличение числа раковых заболеваний или наследственных изменений по сравнению с естественным уровнем будет трудно оп­ределить даже при широкомасштабных и хорошо организованных дол­госрочных эпидемиологических исследованиях. Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рам­ках Проекта. По сравнению с контрольными районами не было обна­ружено достоверных отличий числа и видов психологических нару­шений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменений.

Радиационно опасные объекты (РОО) - это объекты, при аварии на которых или при разрушении которых может произойти выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом для нормальной эксплуатации значения, что может привести к массовому облучению людей, сельскохозяйственных животных и растений, а так же радиоактивному загрязнению природной среды выше допустимых норм.

К типовым РОО относятся:

  • ? атомные станции;
  • ? предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов;
  • ? предприятия по изготовлению ядерного топлива;
  • ? научно-исследовательские и проектные организации, имеющие ядерные установки и стенды;
  • ? транспортные ядерные энергетические установки;
  • ? военные объекты.

Потенциальная опасность РОО определяется количеством радиоактивных веществ, которое может поступить в окружающую среду в результате аварии на РОО. А это в свою очередь зависит от мощности ядерной установки.

Радиационная авария - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Особую опасность для людей представляют аварии на атомных электростанциях (АЭС). Вся опасность и тяжесть таких аварий состоит в том, что из ядерных реакторов выбрасываются в атмосферу радиоактивные вещества в виде мельчайших пылинок и аэрозолей. Под воздействием ветра радиоактивные вещества могут распространяться на значительные расстояния от места аварии. Выпадая из облаков на землю, эти вещества образуют зону радиоактивного загрязнения.

Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых жизненных процессов в организме человека. Человек в момент воздействия радиоактивных излучений не получает телесных повреждений и не испытывает болевых ощущений. Однако в результате воздействия радиоактивных излучений у пораженных людей может развиться лучевая болезнь, приводящая к смертельному исходу.

При радиоактивном заражении живой организм в течение нескольких секунд получает дозу проникающей радиации, а доза внешнего облучения накапливается им в течение всего времени пребывания на зараженной территории.

Накопление дозы внешнего облучения в организме происходит неравномерно. Большая ее часть накапливается в первые часы и дни после выпадения радионуклидов, когда уровень радиации наиболее высокий. В первые сутки накапливаются 50% суммарной дозы до полного распада радиоактивных веществ, за четверо суток - 60%. Поэтому особенно важно обеспечить защиту от радиации в первые четверо суток.

Доза облучения, полученная живым организмом в течение четырех суток подряд (в любом распределении по дням) называется однократной. При продолжительном облучении в организме наряду с процессами поражения происходят и процессы восстановления. В связи с этим суммарная доза облучения, вызывающая один и тот же эффект, при продолжительном многократном облучении более высокая, чем при однократном. Дозы, не приводящие к потере работоспособности при однократном и многократном облучении, следующие: однократная (в течение четырех суток) - 50 Р; многократная: в течение 10- 30 суток - 100 Р, 3-х месяцев - 200 Р, в течение года - 300 Р.

Превышение указанной дозы вызывает заболевание лучевой болезнью. Лучевая болезнь протекает, как правило, в острой форме и в зависимости от однократной дозы облучения может быть разной степени тяжести: легкой (100-200 Р), средней (200-400 Р), тяжелой (400-600 Р) и крайне тяжелой (свыше 600 Р).

Лучевая болезнь легкой степени характеризуется недомоганием, общей слабостью, головными болями, небольшим снижением лейкоцитов в крови. Все пораженные выздоравливают без лечения.

Лучевая болезнь средней тяжести проявляется в более тяжелом недомогании, расстройстве функций нервной системы, рвоте. Количество лейкоцитов снижается более чем наполовину. При отсутствии осложнений люди выздоравливают через несколько месяцев. При осложнениях может наступить гибель до 20% пораженных.

При лучевой болезни тяжелой степени отмечаются тяжелое общее состояние, сильные головные боли, рвота, понос, кровоизлияния в слизистые оболочки и кожу, иногда потеря сознания. Количество лейкоцитов и эритроцитов в периферической крови резко снижается, появляются осложнения. Без лечения смертельные исходы наблюдаются в 50% случаев.

Лучевая болезнь крайне тяжелой степени без лечения заканчивается смертельным исходом в 80-100% случаев.

При наружном заражении радиоактивными веществами наблюдаются «бета-ожоги» кожных покровов. У людей наиболее часто отмечаются поражения кожи на руках, голове, в области шеи; поясницы;

у животных - на спине, а при поедании травы с загрязненного пастбища - на морде. Тяжесть поражения зависит от продолжительности контакта радионуклидов с поверхностью тела человека, животного. Допустимая степень радиоактивного заражения поверхности тела человека 20 мР/ч, животного - 100 мР/ч при контакте в течение суток.

Внутреннее поражение людей радиоактивными веществами может произойти при вдыхании воздуха и приеме пищи и воды. Большая часть радионуклидов проходит кишечник транзитом и выделяется из организма. При этом они вызывают радиационное поражение слизистой оболочки желудочно-кишечного тракта, что приводит к расстройству функций органов пищеварения. Другая часть изотопов, биологически наиболее активных, к которым в первую очередь относятся йод-131, стронций-90, цезий-137, обладает высокой радиотоксичностью и почти полностью всасывается в кишечник, распределяясь по органам и тканям организма.

Таким образом, при аварии на АЭС следует защищаться от двух видов облучения: внешнего и внутреннего. Первое возникает в результате воздействия на человека излучений, испускаемых радиоактивными веществами, выпавшими на земную поверхность. Второе - результат попадания радиоактивных веществ внутрь организма при вдыхании воздуха и приеме пищи и воды.

В случае аварии на АЭС и угрозе радиоактивного заражения местности подается предупредительный сигнал гражданской обороны «Внимание всем!» в виде сирен, прерывистых гудков предприятий и специальных транспортных средств. По радио и телевидению передается сообщение местных органов власти или гражданской обороны.

Противорадиационная защита включает в себя использование коллективных и индивидуальных средств защиты, соблюдение режима поведения на зараженной радиоактивными веществами территории, защиту продуктов питания и воды от радиоактивного заражения, использование медицинских средств индивидуальной защиты, определение уровней заражения территории, дозиметрический контроль и экспертизу заражения радиоактивными веществами продуктов питания и воды.

При сообщении о радиационной опасности необходимо выполнить следующие мероприятия.

  • 1. Укрыться в жилом доме или служебном помещении. Принять меры от проникновения в помещение (дом) радиоактивных веществ с воздухом, для чего закрыть форточки, вентиляционные люки, отдушины, уплотнить рамы и дверные проемы.
  • 2. Создать запас питьевой воды и перекрыть краны. Накрыть колодцы пленкой или крышкой.
  • 3. Провести профилактический прием препаратов стабильного йода: таблеток йодистого калия или водно-спиртового раствора йода. Йодистый калий следует принимать после еды вместе с чаем или водой 1 раз в день в течение 7 суток по одной таблетке (0,125 г) на один прием. Водно-спиртовой раствор йода нужно принимать после еды 3 раза в день в течение 7 суток по 3-5 капель на стакан воды. Важно знать, что прием стабильного йода за 6 ч и менее до подхода радиоактивного облака или выпадания радиоактивных веществ обеспечивает полную защиту. Если принять его в начале облучения, то эффективность несколько уменьшается, а через 6 ч снижается наполовину.
  • 4. Подготовиться к возможной эвакуации.
  • 5. Постараться соблюдать следующие правила радиационной безопасности и личной гигиены:

S использовать в пищу только консервированное молоко и пищевые продукты, хранившиеся в закрытых помещениях и не подвергшиеся радиоактивному загрязнению;

S не пить молоко от коров, которые продолжают пастись на загрязненных полях, и не употреблять овощи, которые росли в открытом грунте и были сорваны после начала поступления радиоактивных веществ в окружающую среду;

S не пить воду из открытых источников и водопровода;

S принимать пищу только в закрытых помещениях, при этом тщательно мыть руки с мылом перед едой и полоскать рот 0,5%-ным раствором питьевой соды;

S избегать длительных передвижений по загрязненной территории, не ходить в лес и воздержаться от купания в открытом водоеме;

S входя в помещение с улицы, оставлять «грязную» обувь на лестничной площадке или на крыльце.

  • 6. При передвижении по открытой местности защищать органы дыхания противогазом, респиратором, носовым платком, бумажной салфеткой или марлевой повязкой (фильтрующая способность носового платка, бумажной салфетки и марлевой повязки значительно повышается при смачивании водой). Для защиты кожи и волосяного покрова следует использовать защитные костюмы, а если их нет - любые предметы одежды (головные уборы, косынки, накидки, перчатки, резиновые сапоги).
  • 7. При оказании первой доврачебной помощи на территории радиоактивного заражения в первую очередь следует выполнять те мероприятия, от которых зависит сохранение жизни пораженного. Затем необходимо устранить или уменьшить внешнее гамма-облучение, для чего используются защитные сооружения: убежища, заглубленные помещения, кирпичные, бетонные и другие здания. Чтобы предотвратить дальнейшее воздействие радиоактивных веществ на кожу и слизистые оболочку, проводят частичную санитарную обработку. Частичная санитарная обработка проводится путем обмывания чистой водой или обтирания влажными тампонами открытых участков кожи. Пораженному промывают глаза, дают прополоскать рот. Затем, надев на пораженного респиратор, ватно-марлевую повязку или закрыв его рот и нос полотенцем, платком, шарфом, проводят частичную дезактивацию его одежды. При этом учитывают направление ветра, чтобы обметываемая с одежды пыль не попадала на других. При попадании радиоактивных веществ внутрь организма промывают желудок, дают адсорбирующие вещества (активированный уголь). При появлении тошноты принимают противорвотное средство. В целях профилактики инфекционных заболеваний рекомендуется принимать противо- бактериальные средства.
  • 8. При эвакуации после прибытия в безопасный район необходимо пройти полную санитарную обработку и дозиметрический контроль. Санитарная обработка заключается в тщательном обмывании всего тела водой с мылом. Обычно она проводится в местных банях, душевых павильонах, санитарных пропускниках, на специально организованных для этого санитарно-обмывочных пунктах, а в теплое время года и в незараженных проточных водоемах. Дозиметрический контроль осуществляется как перед началом санитарной обработки, так и после нее. Если результат оказался неудовлетворительным, санитарную обработку повторяют. Одежда и обувь при этом подвергается частичной или полной дезактивации. Частичная дезактивация заключается в вытряхивании и выколачивании одежды и обуви с использованием щеток, веников, палок. Полная дезактивация одежды и обуви проводится на пунктах специальной обработки, оснащенных специальными установками и приборами. После дезактивации каждую вещь подвергают дозиметрическому контролю, и если окажется, что уровень загрязнения выше допустимых норм, работа проводится вторично. Следует отметить, что работа по дезактивации одежды и обуви проводится в надетых средствах защиты кожи и органов дыхания (противогазах, респираторах, ватно-марлевых повязках, защитных костюмах).
  • 9. Продовольствие и вода также подлежат дезактивации. При этом в зависимости от степени заражения и характера радиоактивных веществ, применяется тот или иной метод дезактивации - отстаивание, фильтрование, перегонка. Воду лучше всего пропустить через фильтры, изготавливаемые из подручных материалов - почвы различных видов, песка, мелкого гравия, угля. Продовольствие дезактивируется путем обработки или замены зараженной тары. Жидкие продукты дезактивируют путем длительного отстаивания, после чего верхний незаряженный слой сливают в чистую посуду. Готовая пиша (суп, щи, каша и др.) дезактивации не подлежит. Ее следует закопать в землю.

Конечно, эти рекомендации не исчерпывают всех мер противорадиационной защиты. Однако соблюдение перечисленных правил или хотя бы части из них позволяет значительно уменьшить риск неблагоприятных последствий аварий на объектах с выбросом радиоактивных веществ.

Вопросы и задания

  • 1. Какие объекты относятся к пожароопасным?
  • 2. Перечислите основные и вторичные поражающие факторы пожара.
  • 3. Какие принимают меры по предотвращению пожаров?
  • 4. Какие в настоящее время используются средства пожарной сигнализации? Дайте их краткую характеристику.
  • 5. Охарактеризуйте спринклерные и дренчерные установки противопожарной автоматики.
  • 6. Какие противопожарные средства используются для тушения пожара? Кратко охарактеризуйте их.
  • 7. Как обследовать задымленное помещение?
  • 8. Какие объекты относятся к взрывоопасным?
  • 9. Какие основные поражающие факторы взрыва?
  • 10. Какие принципы предотвращения взрывов на производственных объектах вы знаете?
  • 11. Какие мероприятия проводятся при ликвидации последствий взрывов?
  • 12. Какие объекты относятся к гидродинамически опасным?
  • 13. Что значит гидродинамическая авария?
  • 14. Чем характеризуется катастрофическое затопление?
  • 15. Как проводится эвакуация и спасение населения при катастрофическом затоплении?
  • 16. Какие объекты относятся к химически опасным?
  • 17. Дайте характеристику наиболее распространенным ядовитым веществам, используемым в промышленном производстве и экономике.
  • 18. Каковы признаки отравления хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 19. Перечислите основные меры зашиты персонала и населения при авариях на химически опасных объектах.
  • 20. Какой существует порядок действий персонала и населения при получении ими информации об аварии и опасности химического заражения?
  • 21. Как повысить защитные свойства дома от проникновения ядовитых веществ?
  • 22. Какие правила следует соблюдать при выходе из зоны химического заражения?
  • 23. Как оказать первую помощь пострадавшим от воздействия хлором (аммиаком, синильной кислотой, фосгеном, окисью углерода, ртутью)?
  • 24. Что представляет собой дегазация? Какие способы дегазации вы знаете и в чем их суть?
  • 25. Какие объекты являются радиационно опасными?
  • 26. Что значит радиационная авария? Каковы ее последствия?
  • 27. Какие мероприятия необходимо выполнить при получении информации о радиационной опасности?
  • 28. Какие правила радиационной безопасности и личной гигиены следует соблюдать при радиоактивном заражении местности?
  • 29. Какие существуют методы дезактивации продовольствия и воды?
  • 30. Оцените опасные в техногенном отношении районы в Вашем городе (поселке).

Общая характеристика объектов использования атомной энергии

По состоянию на 31 декабря 2009 года под надзором межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью (управлений) находилось 2271 организаций (2252 организации в 2008 г.), предприятий и учреждений, осуществлявших свою деятельность в области использования атомной энергии и имевших в своем составе 4738 радиационных источников стационарных (РИС), 1438 пунктов хранения РВ и РАО (ПХ РВ и РАО), где проводились работы с радиоактивными веществами (РВ), радиоактивными отходами (РАО) и радионуклидными источниками (РнИ).

В число поднадзорных объектов входят предприятия авиационной, металлургической, судостроительной, судоремонтной и химической промышленности, горнодобывающей и горнообогатительной отраслей, предприятия топливно-энергетического комплекса, геологические, научные и транспортные организации, воинские части и организации Вооруженных Сил Российской Федерации, медицинские учреждения, таможенные органы и др. (далее - организации).

Общее число поднадзорных организаций, осуществляющих свою деятельность в области использования атомной энергии, стабилизировалось и незначительно отличается от предыдущих отчетных периодов.

Примерно 40 % общего числа поднадзорных организаций не имеют ведомственной принадлежности (ОАО, ЗАО, ООО или организации другой формы собственности). Отсюда возникает проблема по признанию их в качестве эксплуатирующих организаций. Вместе с тем статус «эксплуатирующей организации» является одним из необходимых условий для получения лицензии на деятельность в области использования атомной энергии. Информация о мерах, которые предпринимались в этой ситуации, содержится в отчетах о деятельности Ростехнадзора за предыдущие годы и в обращениях (письмах) в органы надзора за соблюдением законодательства. Однако органы исполнительной власти, которые в соответствии с постановлением Правительства Российской Федерации от 03.07.2006 № 412 осуществляют государственное управление использованием атомной энергии, под разными предлогами отказывают организациям в признании их в качестве «эксплуатирующей организации».

В число поднадзорных организаций входят также 49 региональных и ведомственных информационно-аналитических центров (РИАЦ, ВИАЦ) системы государственного учета и контроля РВ и РАО.

В 2009 году при осуществлении надзорной деятельности основное внимание уделялось:

инспектированию организаций с наиболее потенциально опасными радиационными источниками (РИ), ПХ РВ и РАО, системами и средствами обеспечения радиационной безопасности (РБ);

инспектированию (контролю) проведения организациями радиационно опасных работ, в т.ч. по выводу из эксплуатации неиспользуемых или непригодных к дальнейшей эксплуатации мощных радиоизотопных установок и радиоизотопных термоэлектрических генераторов (РИТЭГ), своевременной перезарядке действующих установок и аппаратов;

надзору за деятельностью РИАЦ и системой физической защиты (ФЗ) РИ, ПХ РВ и РАО. За отчетный период выведено из-под надзора управлений 132 организации (табл. 24).

Таблица 24

Основными причинами вывода из-под надзора организаций являются организационно-правовые и структурные изменения юридических лиц, переход на другие принципы контроля технологических процессов (без применения РИ либо с использованием РИ), не подпадающих под государственное регулирование (малая активность), а также отсутствие финансовых возможностей применять РИ в производственных процессах.

Взято под надзор 95 новых организаций. Их распределение по федеральным округам незначительно отличается от вышеприведенных показателей по организациям, выведенным из-под надзора.

Организация надзора за деятельностью воинских частей и организаций Министерства обороны осуществляется в соответствии с директивой Министра обороны Российской Федерации от 20.01.2003 № Д-3 «О регулировании деятельности воинских частей и организаций Вооруженных Сил Российской Федерации в области использования атомной энергии при обращении с радиоактивными веществами».

За отчетный год организациям было выдано 510 лицензий и 5680 разрешений должностным лицам на право ведения работ в области использования атомной энергии.

Распределение лицензий и разрешений представлено в табл. 25.

Таблица 25. Распределение лицензий и разрешений

Показатель/ управление

Выдано лицензий

Выдано разрешений

Основными видами лицензируемой деятельности являются:

эксплуатация РИ;

эксплуатация хранилищ РВ и РАО.

В сферу государственного надзора входят:

1. Медицинские, научные, исследовательские лаборатории и другие объекты, на которых ведутся работы с открытыми РнИ.

2. Комплексы, установки, аппараты, оборудование и изделия с закрытыми РнИ, в том числе:

технологические и медицинские облучающие установки;

дефектоскопы;

радиоизотопные приборы и другие источники; РИТЭГи.

3. Пункты хранения радиоактивных веществ, в том числе:

специализированные пункты хранения, расположенные главным образом в организациях «Изотоп»;

неспециализированные пункты хранения, расположенные на объектах использования атомной энергии.

4. Хранилища радиоактивных отходов, в том числе:

специализированные хранилища ФГУП «РосРАО» и Чепецкого механического завода;

неспециализированные хранилища, расположенные на объектах использования атомной энергии;

хранилища, содержащие отходы с радионуклидами только природного происхождения.

Всего организаций:

Всего РОО:

В число пяти РО 1-й категории потенциальной радиационной опасности входят: ГНЦ РФ «Физико-энергетический институт им. А.И. Лейпунского» (комплексы производства РВ, неспециализированное хранилище РАО), г. Обнинск Калужской обл.;

Обнинский филиал «ГНЦ РФ ФГУП НИФХИ им. Л.Я. Карпова» (комплексы производства РВ, комплексы мощных изотопных облучательных установок, неспециализированное хранилище РАО), г. Обнинск Калужской обл.;

ФГУ РНЦ «Курчатовский институт» (комплексы мощных изотопных облучательных установок, неспециализированные хранилища РВ и РАО), г. Москва;

ФГУП «Научно-исследовательский институт приборов» (комплекс мощных изотопных облучательных установок, неспециализированные хранилища РАО), г. Лыткарино Московской обл. ФГУП «РФЯЦ-ВНИИЭФ», г. Саров, ЗАТО.

Радиационные источники, содержащие открытые РнИ активностью от минимального уровня до 1,0·1014 Бк, включают:

радиоактивные вещества с суммарной активностью, соответствующей работам I, II и III класса по ОСПОРБ-99 (P-32, S-35, C-14, Ra-226, Zr-95 и др.);

наборы реактивов для радиоиммунологического микроанализа и радиофармпрепараты (РФП), используемые в медицинских учреждениях.

Суммарный годовой расход радиоизотопных генераторов медицинского назначения составил 3213 шт.

Радиационные источники, содержащие закрытые РнИ с активностью от 1·101 до 4·1017 Бк, включают:

мощные облучающие технологические гамма-установки типа РВ-1200, К-20000 (60000, 120000, 200000), «Стерилизатор», «Исследователь», МРХ-γ-100 (20, 25М), «Пинцет», «Панорама», «Тюльпан», ГОТ, ИГУР-1, ГП-2, ГУПЖМП-1, ЯГРС-4 и другие с неподвижным и подвижным облучателем и с разным количеством используемых закрытых источников на основе радионуклида Со-60 с суммарной активностью до 3,0·1015 Бк;

различные модификации радиационно-терапевтических медицинских установок типа «Луч-1», «Агат-л (С, В, ВУ, ВТ, В3, В5), «Рокус-М (АМ)», Teratron Elite 80, Multisours YDR, TERAGAM K-01 с разным количеством используемых закрытых источников на основе радионуклида Со-60 с суммарной активностью до 5,4·1014 Бк;

переносные гамма-дефектоскопы типа «Гаммарид», РИД и «Стапель-5М» с источниками ГИИД-3 (4,5,6), томографы (дефектоскопы) типа CBS LBD на основе Ir-192, Co-60, Cs-137 и Tl-170 с активностью источников до 2,0·1013 Бк;

более 10 видов РИП с источниками изотопов Рu-238-Be-9, Am-241-Be-9, Со-60, Сs-137, Рu-238, Am-241 (от приборов технологического контроля, включающих следящие гамма-уровнемеры, плотномеры, расходомеры, толщиномеры, нейтрализаторы статического электричества, сигнализаторы обледенения, скважинные приборы и датчики дозиметрической аппаратуры с встроенными источниками). Активность изотопов в источниках указанных приборов составляет от 1·101 до 3,7·1011 Бк;

На территории Российской Федерации организациями, имеющими наиболее потенциально опасные РОО, являются:

организации, эксплуатирующие мощные облучающие технологические установки. Основными типами таких установок являются: РВ-1200, К-20000 (60000, 120000, 200000), «Стерилизатор», «Исследователь», МРХ-γ-100 (20, 25М), «Пинцет», «Панорама», «Тюльпан», ГОТ, ИГУР-1, ГП-2, ГУПЖМП-1, ЯГРС-4;

онкологические диспансеры Министерства здравоохранения и социального развития Российской Федерации, эксплуатирующие радиационно-терапевтические медицинские установки различной модификации, например типа «Агат» (Р, Р1, С, В, ВУ, ВТ, В3, В5), «Рокус» (М, МУ), «Селектрон» и др.;

организации, применяющие в технологических процессах методы неразрушающего контроля (гамма-дефектоскопы типа «Гаммарид» - 25, 170/400, 192/120, «Стапель-5М», РИД-21);

организации, проводящие полевые геофизические исследования с использованием РнИ;

организации и их подразделения, в ведении которых имеются необслуживаемые радиоизотопные устройства, в т.ч. РИТЭГ, имеющие в своем составе РИТ с радионуклидом Sr-90. Активность каждого РИТ составляет от 4,81·1014 Бк до 4,55·1015 Бк (в зависимости от типа РИТЭГ), а в РИТЭГ может находиться от 1 до 6 РИТ.

Кроме перечисленных РОО потенциально опасными являются также:

объекты нефтедобывающих организаций, на которых осуществляется хранение в открытом виде нефтепромыслового оборудования с отложениями солей природных радионуклидов Ra-226, Ra-228, U-238, Th-232 и К-40 (например, ОАО

«Салаватнефтеоргсинтез», ООО «Лукойл-Нижневолжскнефть», ОАО «РоснефтьСтавропольнефтегаз» и др.);

технологические подземные емкости, образовавшиеся в результате подземных ядерных взрывов, проведенных для интенсификации добычи нефти и газа (15 взры- вов), а также для глубинного сейсмического зондирования (33 взрыва).

В отношении последних проводится работа по подготовке изменений в Федеральный закон «Об использовании атомной энергии» в части определения статуса этих объектов при их использовании и реабилитации территорий. В соответствии с распоряжением от 17.12.2005 № 2237-р (в редакции распоряжения Правительства Российской Федерации от 20.08.2008 № 1224-р) работа должна быть закончена в 2010 году.

Общая оценка состояния безопасности РОО - удовлетворительная. Оценка основана на отсутствии аварий класса А, П-1 и непревышении свыше установленных норм дозовых нагрузок на персонал поднадзорных организаций и население.

Однако состояние безопасности РОО на ФГУП РНЦ «Прикладная химия» (аварийное состояние хранилищ) и ФГУП «Гидрографическое предприятие» Минтранса России (отсутствие кадровых и технических возможностей для обеспечения безопасности РИТЭГ) оценивается как неудовлетворительное.

Инспекционная деятельность

Государственный надзор за состоянием РБ на РОО осуществляли около 200 инспекторов из 7 отделов по надзору за РБ, 56 отделов инспекций РБ, 11 отделов инспекций ядерной и РБ других направлений надзора, на которых эти обязанности возложены руководством межрегиональных территориальных управлений по надзору за ядерной и радиационной безопасностью (МТУ ЯРБ).

В 2009 году проведено 2212 инспекций (2869 инспекций в 2008 году) состояния РБ и физической защиты на РОО, в том числе 13 комплексных, 1962 целевые и 237 оперативных.

Инспекторский состав, осуществляющий надзор за РБ, имеет практический стаж работы от 1 до 10 лет. Повышение профессионального уровня инспекторов проводится в основном в форме самостоятельной подготовки в системе технической учебы, а также путем проведения семинарских занятий по изучению законодательных актов Российской Федерации, нормативных документов по РБ, приказов и распоряжений Службы.

Задачи, функции и компетенция отделов определены в положениях об отделах, утвержденных приказами руководителей управлений. Перечни поднадзорных организаций, закрепленных за отделами надзора и контроля, утверждены руководителями управлений. Распоряжениями начальников соответствующих отделов поднадзорные организации распределены между сотрудниками отделов по надзору и отделов инспекций.

В отчетном периоде отделы инспекций осуществляли взаимодействие с органами государственной исполнительной власти субъектов Российской Федерации, Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека, Федеральной таможенной службой, Министерством Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий и природоохранной прокуратурой.

Взаимодействие осуществлялось в форме проведения совместных инспекций, комиссий по расследованию происшествий, организации контроля за ввозом-вывозом РВ и РАО на поднадзорную территорию и за ее пределы; обмена информацией по вопросам, относящимся к компетенции каждой из сторон, разработке и выполнению совместных планов, контроля за исполнением мероприятий РБ.

Инспекционная деятельность в основном осуществлялась в соответствии с планами работ Ростехнадзора. Проведение внеплановых инспекций в отчетном периоде было обусловлено следующими причинами:

проверка достоверности сведений, представленных в документах для получения лицензий на деятельность в области использования атомной энергии;

проверка достоверности информации по устранению выявленных нарушений; проверка информации об изменении состояния радиационной безопасности; проверка в связи с выводом организаций из-под надзора или взятием под надзор;

проверка состояния учета и хранения РВ, РИ и РАО в отдельных организациях; проверка хода расследования радиационных происшествий и инцидентов; проверка обстоятельств, связанных с обнаружением «бесхозных» ЗРнИ; проверка вопросов организации утилизации РИ.

Проведено внеплановых инспекций в управлениях (табл. 27):

Таблица 27

Основным видом инспекций при осуществлении надзора были целевые инспекции (более 88 % общего числа), при которых проводилась проверка вопросов обеспечения РБ согласно «Типовой программе целевой инспекции состояния радиационной безопасности на объектах народного хозяйства» (РД-07-13–2001).

Всего в процессе надзорной деятельности выявлено 2831 нарушение в обеспечении радиационной безопасности.

По выявленным нарушениям управлениями составлялись предписания, налагались штрафы, направлялись материалы в правоохранительные органы.

Обобщенные показатели инспекционной деятельности и принятые управлениями меры приведены в табл. 28–29.

Таблица 28. Показатели инспекционной деятельности на радиационно опасных объектах

Управление

Количество поднадзорных организаций

Проведено инспекций

В том числе:

комплексных

Управление

оперативных

Выявлено нарушений

Применено санкций

Показатель выявляе мости нарушений N *

* Ввыявляемость нарушений N - отношение количества выявленных нарушений к количеству проведенных инспекций.

Анализ показывает, что в отчетном периоде: число инспекций - 2212 (2869 в 2008 году); число нарушений - 2831 (4288 в 2008 году); выявляемость - 1,1 (1,49 в 2008 году).

Таблица 29. Сравнительные показатели санкций и мер принуждения, примененных при проведении инспекций на РОО

Примененные меры

Аннулирование (изъятие) лицензий

Приостановление действий лицензий

Запрещение применения оборудования и технологий

Приостановление производства работ

Предупреждения

Наложение штрафов на: организации должностных лиц

Общая сумма взысканных штрафов

Направление материалов в правоохранительные органы

23 (принято 12)

* Лицензии аннулированы по заявлениям организаций о прекращении деятельности.

Практика применения санкций в отношении нарушителей, как правило, является эффективной, но в то же время имеются и отрицательные результаты, связанные с решениями мировых судей.

Меры принуждения, принятые по результатам инспекций, были своевременны- ми, достаточными и эффективными.

Анализ причин нарушений требований безопасности, выполненный по результатам надзорной деятельности, приведен ниже.

Распределение нарушений по видам

Нарушения, связанные с соблюдением требований по:

1. Радиационной безопасности - 1825.

2. Физической защите - 344.

3. Учету и контролю РВ и РАО - 662.

Нарушения радиационной безопасности, связанные с выполнением комплекса мер:

1. Правового характера - 290 (16 %)

1.1. Обеспечение сроков действия разрешительных документов, а также их своевременного переоформления - 268.

1.2. Поддержание финансового обеспечения предела ответственности за убытки и вред, причиненный юридическим и физическим лицам радиационным воздействием при осуществлении разрешенного вида деятельности - 22.

2.Организационного характера - 808 (44 %)

2.1. Общая документация по обеспечению РБ и ее соответствие нормативным требованиям - 431.

2.2. Организация радиационного контроля - 136.

2.3. Готовность к предупреждению радиационных аварий и ликвидация их последствий - 166.

2.4. Проведение расследований обстоятельств и причин нарушений в работе

2.5. Отчетность в установленные сроки по всем разделам УДЛ - 70.

3. Инженерно-технического характера - 204 (11 %)

3.1. Состояние и обслуживание систем и элементов, важных для безопасности -

3.2. Проведение радиационного контроля, в том числе состояние дозиметрических и радиометрических приборов - 90.

4. Квалификационного и обучающего характера - 283 (16 %)

4.1. Организация систематической подготовки и проверки знаний работников

(персонала) по обеспечению РБ, РК, УК РВ и РАО, ФЗ РИ - 153.

4.2. Планирование и осуществление повышения квалификации работников (персонала) по обеспечению РБ, РК, УК РВ и РАО, ФЗ РИ - 118.

4.3. Уровень квалификации персонала - 12.

5. Прочими нарушениями - 240 (13 %)

Основную долю выявленных нарушений требований радиационной безопасности составляют нарушения организационного характера (44 %), связанные с наличием и ведением организационно-распорядительной документации.

Низкая исполнительская дисциплина, отсутствие надлежащего контроля, низкий уровень культуры работы с документами являются причинами нарушений федеральных норм и правил в области использования атомной энергии.

Негативное влияние на деятельность поднадзорных организаций оказывают структурные преобразования хозяйствующих субъектов. В этом случае средняя продолжительность работы в одной должности или на одном рабочем месте работников не превышает, как правило, 2–3 года.

Текучесть кадров на ключевых должностях обусловливает недостаточный уровень обеспечения РБ и, как следствие, высокий процент нарушений, связанных с человеческим фактором.

В отчетном периоде было обращено внимание на качество подготовки и повы- шения квалификации руководителей и специалистов поднадзорных организаций в рамках процедуры выдачи разрешений на право ведения работ в области использования атомной энергии.

В целом основную долю нарушений составляют:

нарушения норм и правил, связанные с учетом и контролем РВ и РАО, физической защиты РИ, ПХ РВ и РАО;

нарушения, связанные собеспечением радиационного контроля, подготовкой и допуском к работе персонала;

нарушения условий действия лицензий, связанные с выполнением мероприятий по введению в действие правовых и нормативных актов, в том числе лицензий, отчетностью в установленные сроки.

В целях непрерывного выполнения поднадзорными организациями мероприятий по обеспечению РБ отделы инспекций осуществляют предупредительный и профилактический контроль:

за выполнением должностными лицами поднадзорных организаций мероприятий по обеспечению требований радиационной безопасности;

за соблюдением должностными лицами поднадзорных организаций сроков представления информации по выполнению УДЛ, по устранению выявленных нарушений, отмеченных в предписаниях.

В отчетном периоде основной предупредительной и профилактической мерой к нарушителям по-прежнему является выдача актов-предписаний (предписаний) на устранение нарушений в деятельности согласно РД-03-43–98 и РД-07-04–99.

Предписания вручались в установленные сроки руководителям и должностным лицам поднадзорных организаций и были приняты к исполнению. Заявлений о несогласии с выданными актами-предписаниями (предписаниями) от поднадзорных организаций не поступало.

Такая мера применялась тогда, когда недостатки носили организационный характер и не влияли в целом на обеспечение радиационной безопасности. Практика такого подхода показала его достаточность и эффективность в проведении надзора за обеспечением безопасности на объектах использования атомной энергии. В отчетном периоде имели место 44 случая нарушений в работе объектов использования атомной энергии класса П-2.

Нарушения были связаны с:

нарушением требований технологического процесса персоналом при проведении работ по разрядке ИИИ - 1 случай;

дорожно-транспортным происшествием при транспортировании УКТ-1Ф - 1 случай;

обрывом каротажного снаряда при проведении геофизических работ, имеющего в своем составе радиоизотопные источники излучения, - 19 случаев (причины: износ отдельных элементов каротажных снарядов, которые не обнаруживаются при подготовке к проведению геофизических работ, неудовлетворительная подготовка скважин, нарушения технологического процесса при выполнении работ, геологические осложнения);

качеством радиационного контроля при подготовке металлолома (обнаружением бесхозных источников ионизирующего излучения) для отправки на переработку в ООО «Амурметалл» (г. Комсомольск-на-Амуре) - 20 случаев (обнаружение локальных источников ионизирующего излучения в металлоломе, отправляемом на переработку);

прочими нарушениями - 3 случая. Динамика уровня нарушений в работе РОО приведена в табл. 30–31.

Таблица 30. Сведения о нарушениях радиационной безопасности в 2009 году

Показатель/управление

ЦМТУ

СЕМТУ

ВМТУ

ДМТУ

УМТУ

СМТУ

ДВМТУ

Количество зафиксирован ных нарушений, из них

Таблица 31. Динамика уровня нарушений в работе РОО

Показатель/год

Количество зафиксированных нарушений

По классам нарушений согласно

Проведенный контроль за ходом расследования и последующий анализ управлениями представленных организациями материалов расследований нарушений показал, что:

имели место ошибочные действия персонала и нарушение им требований проведения радиационно опасных работ;

выявлены нарушения требований нормативных документов по безопасному ведению радиационно опасных работ;

мероприятия по устранению причин и по профилактике нарушений носили формальный характер, отчетные документы не соответствуют установленным формам;

допускается превышение сроков проведения расследования и передачи оперативной информации, а в выводах комиссии не отражаются конкретные причины нарушений.

За отчетный период:

1. Превышения основных пределов доз облучения персонала и населения не зафиксировано.

2. Недопустимых выбросов и сбросов радиоактивных веществ не было.

3. Случаев хищений, утрат или несанкционированного использования радиоактивных веществ не выявлено.

4. Несанкционированного проникновения на территорию РОО, несанкционированного доступа к РИ, РВ и РАО не отмечено.

Обращение с РАО и РИ

На территории Российской Федерации сбор, транспортирование, переработку, кондиционирование и хранение РАО осуществлялось ГУП МосНПО «Радон», филиалами Федерального государственного унитарного предприятия «Предприятие по обращению с радиоактивными отходами «РосРАО» (ФГУП «РосРАО»).

Сдача РАО организациями, прием и хранение РАО филиалами ФГУП «РосРАО» осуществлялись в соответствии с требованиями нормативных технических документов. Радиационная обстановка на объектах и в санитарно-защитной зоне контролируется лабораториями радиационного контроля. Превышение допустимых уровней радиационных параметров и загрязнение окружающей среды не зарегистрировано.

Переработкой РАО занимаются ГУП МосНПО «Радон» и филиал ФГУП «РосРАО». Для этого используются:

установка остекловывания (1 ед. на МосНПО «Радон») производительностью по стеклу - 75 кг/ч, по шихте - 105 кг/ч;

установки битумирования (1 ед. на МосНПО «Радон» и 1 ед. в Ленинградском филиале «Северо-Западный территориальный округ» ФГУП «РосРАО»);

установки цементирования (4 ед. на МосНПО «Радон» и 1 ед. в Ленинградском филиале «Северо-Западный территориальный округ» ФГУП «РосРАО»);

установки водоочистки (3 ед. на МосНПО «Радон и 1 ед. в Ленинградском филиале «Северо-Западный территориальный округ» ФГУП «РосРАО») производительностью до 110 м3/ч;

установка концентрирования (1 ед. на МосНПО «Радон»);

установка сжигания (1 ед. на МосНПО «Радон» и 1 ед. в Ленинградском филиале «Северо-Западный территориальный округ» ФГУП «РосРАО»);

установки прессования (2 ед. на МосНПО «Радон» и 1 ед. в Ленинградском отделении филиала «Северо-Западный территориальный округ» ФГУП «РосРАО»).

В рамках реализации целевой программы «Переработка и утилизация металлических радиоактивных отходов» эксплуатируется комплекс по переработке металлических отходов, загрязненных РВ (ЗАО «Экомет-С», г. Сосновый Бор Ленинградской обл.).

Анализ состояния и эффективности работы установок позволяет сделать вывод об их надежности и достаточной безопасности для персонала и окружающей среды, что подтверждается результатами радиационного контроля (табл. 32).

Таблица 32. Количество РАО, образовавшихся и сданных организациями на переработку и захоронение

Управление

Жидкие РАО

Отработавшие

по активн., Бк

по объему, м3

по активн., Бк

по объему, м3

по активн., Бк

по кол-ву, ед.

по активн., Бк

по объему, м3

по активн., Бк

по объему, м3

по активн., Бк

по кол-ву, ед.

Управление

Количество отходов, образовавшихся в организациях

Количество отходов, сданных организаци ями на переработку и захоронение

Жидкие РАО

Отработавшие НСС (УСЭ) или поврежденные ЗРнИ

Отработавшие

НСС (УСЭ) или поврежденные ЗрнИ

по активн., Бк

по объему, м3

по активн., Бк

по объему, м3

по активн., Бк

по кол-ву, ед.

по активности, Бк

по объему, м3

по активн., Бк

по объему, м3

по активн., Бк

по кол-ву, ед.

В отчетном периоде были продолжены работы по обследованию и продлению назначенного срока службы гамма-терапевтических аппаратов. Более 85 % аппаратов изношены, нет соответствия между световыми и радиационными полями, в некоторых случаях не обеспечивается радиационная безопасность персонала и пациентов.

В отчетном периоде продолжилась замена устаревшей радиационной техники. Темпы замены оборудования связаны с финансовыми возможностями поднадзорных организаций. В медицинских учреждениях страны находится около 300 облучательных головок гамма-терапевтических аппаратов типа «Рокус» и «Агат» с защитой из обедненного урана.

Промышленные предприятия имеют около 10 тысяч гамма-дефектоскопов и защитных контейнеров для ИИИ, биологическая защита которых содержит обедненный уран. Большинство гамма-терапевтических аппаратов и гамма-дефектоскопов выработало назначенный срок службы и в ближайшее время подлежит выводу из эксплуатации. На территории ОАО «НИИТФА» в результате разборки РИТЭГ масса обедненного урана в изделиях и отдельных деталях постоянно растет. Многие изделия защитной техники из обедненного урана находятся в муниципальной собственности и в собственности юридических лиц. Есть основание предполагать, что число обращений собственников с просьбой об утилизации в ближайшее время вы- растет в связи с окончанием назначенного срока службы и выводом изделий из эксплуатации. Из-за отсутствия системы сбора и утилизации указанных изделий имелись случаи появления их в пунктах сбора металлического лома, не исключено их появление на заводах по переработке металлолома. В ОАО «НИИТФА» и ОАО «В/О

«Изотоп» накопилось более 70 т защиты из обедненного урана.

Проблема утилизации изделий из обедненного урана продолжает оставаться актуальной и за отчетный период не получила своего разрешения.

Обеспечение безопасности РОО

Обеспечение радиационной безопасности в организациях соответствует нормам и требованиям нормативных документов.

Существующие системы и элементы, обеспечивающие РБ (системы перемещения и фиксации закрытых РнИ, системы управления РИ, системы сигнализации и оповещения о радиационной опасности, системы блокировок, системы физических барьеров, системы электро-, тепло-, водо-, газоснабжения, системы вентиляции и

пожарной безопасности), в основном соответствуют проектным требованиям, требованиям нормативных документов и находятся в рабочем состоянии.

Техническое обслуживание, замена выработавшего ресурс оборудования в онкологических диспансерах проводились силами специализированных организаций, имеющих соответствующие лицензии, и аккредитованными лабораториями.

Анализ выполнения требований РБ показывает, что возможности поднадзорных организаций не одинаковы.

В большинстве организаций эксплуатация РИ, обращение с РВ и РАО осуществляется в соответствии с требованиями нормативных документов в области использования атомной энергии. Однако в ФГУП «Гидрографическое предприятие» (под надзором ДВМТУ и СЕМТУ)) и ФГУП «РНЦ «Прикладная химия» (под надзором СЕМТУ) не наблюдается существенного улучшения организации РБ.

Значительная часть неустраняемых в установленные сроки нарушений во многом связана с недостатком у организаций финансовых средств на строительномонтажные работы, вывод из эксплуатации РИ, приобретение радиационной техники, замену отработавших назначенный срок службы закрытых РнИ и сдачу на длительное хранение (захоронение) РАО, техническое обслуживание и освидетельствование технических средств и систем, обеспечивающих РБ.

Это характерно в первую очередь для бюджетных организаций федерального подчинения, бюджетных организаций субъектов Российской Федерации, а также некоторых акционерных обществ.

Радиационный контроль (РК) в поднадзорных организациях осуществлялся с учетом категории РОО по потенциальной радиационной опасности и класса работ штатными службами РБ или назначенными ответственными лицами, а в отдельных случаях привлеченными организациями, имеющими лицензии Службы на оказание такого рода услуг.

РК на РОО осуществлялся с использованием радиометров и дозиметров, которые своевременно проходили поверку в метрологических учреждениях Федерального агентства по техническому регулированию и метрологии.

Повышению качества РК способствовала замена в отчетном периоде в ряде поднадзорных организаций образцов устаревших дозиметрических приборов на современные.

Основными контролируемыми параметрами при эксплуатации РИ в организациях являются:

мощность дозы гамма-излучения;

уровень радиоактивного загрязнения рабочих поверхностей, оборудования, транспортных средств, одежды и кожных покровов персонала.

Кроме того, осуществлялся контроль герметичности закрытых РнИ, а при работе с открытыми РнИ - контроль за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений организаций.

В целях оперативного контроля радиационных параметров, обеспечения гарантированного непревышения основных пределов доз облучения и снижения уровней облучения до возможно низкого уровня в поднадзорных организациях установлены контрольные уровни, согласованные с органами Роспотребнадзора, например:

среднегодовая эффективная доза за любые последовательные 5 лет для персонала группы А:

а) эксплуатирующего гамма-терапевтические аппараты - не более 13–16 мЗв год;

б) эксплуатирующего гамма-дефектоскопы - не более 10–15 мЗв в год;

в) эксплуатирующего облучающие установки - не более 17 мЗв в год;

г) эксплуатирующего аппаратуру и приборы для геофизических исследований буровых скважин с применением РИ - не более 10–16 мЗв в год;

д) в филиалах ФГУП «РосРАО» - не более 10 мЗв в год;

е) эксплуатирующего РИТЭГ - не более 10 мЗв в год;

мощность эквивалентной дозы на поверхности РИП - не более 15–30 мкЗв/ч, на расстоянии 1 м - 1,5–3,0 мкЗв/ч;

мощность эквивалентной дозы на расстоянии 1 м от радиационных головок гамма-дефектоскопов - не более 15–20 мкЗв/ч;

на рабочих местах - 1–2 мкЗв/ч;

смежных помещениях - до 0,2 мкЗв/ч.

Дозовые нагрузки на работников в 2009 году не превышали контрольных уровней. Показатели дозовых нагрузок персонала особо радиационно опасных профессий

за последние 3–5 лет (дефектоскописты, дозиметристы, персонал, обслуживающий облучающие установки и аппараты, операторы каротажных станций, дезактиваторщики, рабочие захоронения, водители спецавтомобилей и др.) меняются незначительно и соответствуют следующим значениям:

по годовой эффективной дозе: для лиц из персонала категории А - от 2 мЗв в год до 17 мЗв в год, в том числе:

дефектоскописты в разных регионах - от 1,2 до 9,14 мЗв в год; персонал, обслуживающий облучающие установки, - 1,03 мЗв в год; медицинские работники - от 1,6 до 2,11 мЗв в год;

промышленные работники - от 1,01 до 1,9 мЗв в год; дезактиваторщики - от 1,3 до 4,0 мЗв в год; работники пункта хранения - 0,19 мЗв в год;

рабочие захоронения - 2,46 до 3,18 мЗв в год;

водители спецавтомобилей - от 0,05 до 3,0 мЗв в год;

рабочие, обслуживающие БГИ, РИП и т.п., - от 1,5 до 2,0 мЗв в год;

дозиметристы - 2,8 до 5,8 мЗв в год;

работники каротажных станций - от 1,63 до 12,66 мЗв в год;

персонал, работающий с открытыми РВ по II–III классу:

по II классу - до 1,89 мЗв в год;

по III классу (промышленные организации и медицинские учреждения) - от 1,2 до 4,47 мЗв в год.

Превышений установленных контрольных уровней по контролируемым параметрам радиационных факторов не выявлено. Выбросы и сбросы радионуклидов в окружающую среду не превысили разрешенных пределов.

Уровень квалификации персонала, осуществляющего эксплуатацию РОО и контроль за РБ, устанавливается в ходе инспекций и соответствует действующим требованиям.

Мероприятия, направленные на повышение уровня физической защиты РОО, включали меры организационного характера (разработка и пересмотр документов) и инженерно-технического характера (совершенствования средств охранной сигнализации, защитных барьеров, сил охраны и т.п.). Состояние ФЗ в поднадзорных организациях обеспечивает сохранность РИ, РВ и РАО. Хранение источников излучения осуществляется в специально отведенных и оборудованных для этих целей помещениях, оснащенных системой охранной сигнализации, выведенной на пульт охраны. Организациями проводится анализ соответствия существующих систем ФЗ

требованиям федеральных норм и правил и принимаются меры к устранению недостатков и замечаний, вскрытых при проведении инспекций.

В целях улучшения организации ФЗ на РОО целесообразно:

организовать конструктивное взаимодействие с администрациями субъектов РФ, органами ФСБ и МВД по проведению совместных проверок состояния систем ФЗ организаций;

организовать методическую помощь организациям в изучении и практической реализации нормативных правовых документов по обеспечению ФЗ;

организовать распространение положительного опыта поднадзорных организаций в решении задач создания, функционирования и совершенствования систем ФЗ РИ, РВ и РАО.

Степень готовности к ликвидации радиационных аварий и их последствий определяется наличием перечней возможных аварий при осуществлении разрешенной деятельности и прогноза их последствий, состоянием достаточности и соответствия технических средств и аварийных запасов утвержденной номенклатуре, программой подготовки и методикой проведения противоаварийных тренировок, навыками, приобретенными персоналом при проведении вышеуказанных тренировок.

Во всех организациях разработаны планы мероприятий по защите персонала, имеются инструкции по действиям персонала в аварийных ситуациях, предусмотрены аварийные запасы, количество которых определяется по согласованию с органами Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. В этих документах определены аварийные ситуации (фрагменты исходных событий) и действия персонала при возникновении аварийных ситуаций.

Программы подготовки персонала включают и проведение противоаварийных тренировок. Так, обучение в Учебно-научном центре «Геофизика» г. Уфа предусматривает обязательные противоаварийные тренировки персонала, проходящего обучение, на имеющихся тренажерах.

Анализ инспекционной деятельности за 2009 год показал, что основными факторами, оказывающими негативное влияние на состояние радиационной безопасности радиационно опасных объектов, являются:

изношенность техники и оборудования, используемых при работах с радиоактивными веществами и радиоактивными отходами;

необходимость вывода из эксплуатации мощных радиоизотопных установок, вы- работавших ресурс, и перегрузка действующих радиоизотопных установок;

незавершенность создания системы государственного учета и контроля РВ и РАО

в субъектах Российской Федерации;

не всегда достаточный уровень качества проводимых работ организациями, предоставляющими услуги эксплуатирующим организациям;

сохранение проблемы утилизации изделий из обедненного урана;

проблемы утилизации неиспользуемых и непригодных для дальнейшей эксплуатации (включая аварийные) РИТЭГ;

проблема накопления и необоснованного долговременного хранения в организациях источников с истекшим назначенным сроком службы в основном из-за ограниченных финансовых возможностей;

замена или продление назначенных сроков службы ЗРнИ метрологического назначения в воинских частях;

отсутствие правового статуса объектов подземных ядерных взрывов.

Анализ радиационной обстановки показывает, что:

системы и элементы, важные для безопасности (перемещения и фиксации РнИ, управления РИ, сигнализации и оповещения о радиационной аварии, блокировок, физических барьеров, электро-, тепло-, водо-, газоснабжения, вентиляции и др.), обеспечили безопасность персонала и населения;

дозовые нагрузки персонала не превысили контрольных уровней, что свидетельствует о надежности существующей защиты от внешнего излучения;

на РОО имеется достаточное количество систем обеспечения РБ, которые не в полной мере соответствуют требованиям существующих нормативных документов и требуют замены или модернизации;

требования по РБ организациями выполняются, допущенные нарушения не привели к переоблучению персонала и населения;

радиационные факторы, создаваемые технологическими процессами на рабочих местах (выбросы, сбросы, загрязнения, наведенная активность), не оказывают воздействия на население и персонал выше допустимых значений.

По результатам проведенных инспекций и проверок состояние радиационной безопасности организаций, эксплуатирующих РИ, оценивается как удовлетворительное. Исключение составляют:

ФГУП РНЦ «Прикладная химия» (под надзором Северо-Европейского МТУ ЯРБ): сооружения, системы, устройства и механизмы радиохимического производства (РХП) выработали установленный ресурс, нуждаются в техническом освидетельствовании, ремонте и продлении сроков эксплуатации;

необходимость передачи оставшихся 475,5 м3 ЖРО в Ленинградское отделение филиала «Северо-западный территориальный округ» ФГУП «РосРАО»);

ЗАО «Светлана-Полупроводники» (под надзором Северо-Европейского МТУ ЯРБ):

на балансе предприятия находится установка ГОТ с ЗРнИ в количестве 84 шт. на основе цезия-137. Установка введена в эксплуатацию в феврале 1991 года. Срок службы установки по паспорту - 10 лет, т.е. срок службы установки просрочен.

ФГУП «Гидрографическое предприятие» Федерального агентства морского и речного транспорта - эксплуатация РИТЭГ (под надзором Дальневосточного МТУ ЯРБ и Северо-Европейского МТУ ЯРБ):

состояние РБ оценивается как неудовлетворительное по техническому состоянию РИТЭГ, условиям их эксплуатации и обеспечению физической защиты; ряд РИТЭГ не обследовались более 10 лет.

Кирово-Чепецкое отделение Нижегородского филиала ФГУП «РосРАО» (под надзором Волжского МТУ ЯРБ):

в зоне бассейна реки Вятка санитарной охраны водозабора г. Кирова расположены объекты производства тетрафторида и гексафторида урана, эксплуатация которых прекращена в 1992 году и часть которых в настоящее время находится в аварийном состоянии (цех 93), а также временные хранилища радиоактивных отходов, на которых сосредоточено 437 тыс. т среднеактивных и низкоактивных отходов.

Все объекты размещения РАО являются объектами временного хранения РАО и не имеют достаточных защитных барьеров, исключающих загрязнение окружающей среды с течением времени. Хранилища РАО расположены в водоохраной зоне реки Вятка и во втором поясе зоны санитарной охраны водозабора г. Кирова.

Под надзором управлений находятся 909 организаций, занимающихся проектированием радиационно опасных объектов, изготовлением (конструированием) оборудования для них и экспертизой документов.

Принято под надзор в отчетном периоде 261 такая организация. Распределение организаций по управлениям представлено в табл. 33.

Таблица 33. Распределение организаций по управлениям

Показатель/ управление

организаций, занимающихся проектированием РОО, конструированием (изготовлением) оборудования, экспертизой документов

Принято под надзор в 2009 г.

В отчетном периоде были продолжены работы по созданию информационной системы регулирующего органа «RAIS 3.0».

В январе 2009 года были проведены приемочные испытания и ввод в эксплуатацию 1-го уровня информационной системы Ростехнадзора «RAIS 3.0 Инспекция» по регулированию безопасности в организациях, эксплуатирующих РИ. Управления получили необходимые программные средства и 108 комплектов стационарных и переносных компьютеров для эксплуатации 1-го уровня информационной системы «RAIS 3.0 Инспекция».

В ноябре 2009 года были проведены приемочные испытания 2-го уровня информационной системы «RAIS 3.0 МТУ ЯРБ». Подготовлен пакет программных средств для проведения консолидации баз данных 1-го и 2-го уровней информационной системы «RAIS 3.0».

Мероприятия по разработке 3-го уровня информационной системы регулирующего органа «RAIS 3.0 Центр» будут продолжены в следующем отчетном периоде.

В целом межрегиональные территориальные управления осуществляли деятельность согласно полномочиям, определенным Положением о Федеральной службе по экологическому, технологическому и атомному надзору, что позволило сохранить достигнутый уровень безопасности РОО.

Миссия МАГАТЭ

По запросу Правительства Российской Федерации международная группа из

22 экспертов в области ядерной и радиационной безопасности, безопасности при обращении и транспортировании ядерных материалов, радиоактивных веществ и радиоактивных отходов посетили Министерство природных ресурсов и экологии (Минприроды России) с 16 по 27 ноября 2009 года для оказания услуги по комплексной оценке деятельности регулирующего органа (IRRS).

Цель миссии IRRS заключалась в экспертной оценке системы регулирования безопасности всех типов ядерных установок гражданского назначения, установок

по обращению с радиоактивными отходами и радиационных источников, а также соответствующих видов деятельности в области использования атомной энергии и эффективности выполнения регулирующих функций Ростехнадзором. Экспертная оценка осуществлялась путем сравнения со стандартами безопасности МАГАТЭ и соответствующим Кодексом поведения в качестве международного эталона обеспечения безопасности. Данная миссия также проходила в целях обмена информацией и опытом регулирования безопасности между группой экспертов из регулирующих органов разных стран и представителями российского регулирующего органа в областях, охватываемых миссией IRRS.

Команда экспертов IRRS состояла из 18 старших экспертов в области регулирования из 15 государств - членов МАГАТЭ, пяти представителей МАГАТЭ. Команда IRRS провела рассмотрение деятельности российского регулирующего органа в следующих областях: ответственность и функции регулирующего органа; система управления (менеджмента) регулирующего органа; деятельность регулирующего органа, включая разрешительную деятельность, экспертизу и оценку, процедуры инспекций и санкций, разработку норм и правил.

Экспертная оценка миссии IRRS охватила вопросы регулирования безопасности атомных электростанций, исследовательских ядерных установок, объектов ядерного топливного цикла, установок обращения с радиоактивными отходами, а также промышленных и медицинских источников излучения.

В ходе миссии IRRS были рассмотрены выбранные аспекты Кодекса поведения по безопасности и сохранности и защите радиационных источников и транспортирования ядерных материалов, радиоактивных веществ и радиоактивных отходов. Признавая важность разрабатываемого Федерального закона «Об обращении с радиоактивными отходами», группа экспертов IRRS не проводила подробную оценку существующей нормативной системы, связанной с действующими системами обращения с радиоактивными отходами, и соответствующих видов деятельности.

Миссия включала рассмотрение регулирующей деятельности, проведение опросов и обсуждений с руководящими работниками и ведущими специалистами Минприроды России и Ростехнадзора. Для содействия оценке эффективности системы инспектирования, связанной с регулированием безопасности, группа экспертов IRRS также провела опросы с персоналом других организаций во время посещения Калининской АЭС, ФГУП «ПО «Маяк», исследовательского реактора МИФИ, научно-исследовательского центра по обезвреживанию РАО и охране окружающей среды ГУП МосНПО «Радон», ООО НТЦ «Нуклон» и НТЦ ЯРБ - организации технической поддержки Ростехнадзора.

Минприроды России и Ростехнадзор представили группе экспертов IRRS существенный пакет документации в качестве справочного материала и результатов глубокой самооценки деятельности регулирующего органа, включая отчет с выводами и план действий с мероприятиями по повышению эффективности при выполнении функции регулирующего органа. Группа экспертов IRRS согласилась с предложенным планом действий и отметила своевременную полную реализацию этого плана.

В ходе этой миссии группе экспертов IRRS была предоставлена возможность обсуждения политики и практики регулирования с руководством и специалистами Минприроды России и Ростехнадзора. Группа экспертов IRRS отметила примеры положительной практики, дала рекомендации и предложения, где усовершенствование необходимы или желательны для повышения эффективности регулирующей деятельности.

Группа экспертов IRRS отметила, что в Российской Федерации имеется законодательная и нормативная база и структура органов исполнительной власти для регулирования безопасности. В части реализации политики государства в области обеспечения ядерной и радиационной безопасности 29 мая 2008 года была проведена организационная реформа, в результате чего Ростехнадзор перешел в ведение Минприроды России. Группа экспертов IRRS предполагает, что Минприроды России как государственный орган обеспечит серьезную поддержку Ростехнадзору в усилении его структуры, как органа регулирования и повышении эффективности регулирования ядерной и радиационной безопасности в Российской Федерации.

Примеры положительной практики регулирующей деятельности, отмеченные группой экспертов IRRS, включают:

широкое применение стандартов безопасности МАГАТЭ в разработке норм и правил по обеспечению ядерной и радиационной безопасности;

периодическую аттестацию инспекторов, специалистов и руководителей Ростехнадзора внутренним советом;

подход Ростехнадзора к оценке компетенции руководителей и руководящего технического персонала объектов использования атомной энергии;

положение об учете радиационных источников в Информационной системе регулирующего органа, основанной на соответствующей системе МАГАТЭ;

наличие полных и подробных комплектов документов, описывающих текущее состояние на ядерных установках.

Группа экспертов IRRS отметила некоторые приоритетные вопросы, требующие совершенствования, и полагает, что принятие во внимание этих рекомендаций позволило бы повысить общую эффективность системы регулирования.

1. Законодательство в области ядерной и радиационной безопасности требует усовершенствования в целях обеспечения эффективного и рационального регулирования в области использования атомной энергии в Российской Федерации. Некоторые законодательные акты уже разрабатываются, и важность этих актов отметили Минприроды России и Ростехнадзор в их общих планах действий. Особое внимание следует уделить снятию ограничений на осуществление надзорной деятельности (проведение инспекций) и принятию Федерального закона «Об обращении с радиоактивными отходами».

2. Вопрос политики, который также требует особого внимания, заключается в предоставлении дополнительных ресурсов Ростехнадзору, особенно в свете действующей программы развития атомной отрасли и строительства новых атомных электростанций и требования не «расшатывать» стабильный процесс осуществления надзора за существующими ядерными установками и другими объектами использования атомной энергии.

3. В законодательстве требуются рациональные решения для подтверждения надлежащего финансирования независимой экспертизы и оценки безопасности при рассмотрении заявлений о выдаче лицензий и для предоставления средств для найма и поддержания компетентного персонала в Ростехнадзоре. Кроме того, Ростехнадзору следует разработать программу поддержки объективной и полностью независимой деятельности, проводимой постоянными (местными) инспекторами по надзору за безопасностью ядерных установок.

4. Четкая координация действий Минприроды России и Ростехнадзора с другими регулирующими органами особенно необходима для оптимизации регулирования в таких областях, как обеспечение радиационной защиты, регулирование радиоактивных выбросов и сбросов, а также обеспечение пожарной безопасности.