Натуральные числа и их свойства. Числа. Натуральные числа

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

С чего начинается изучение математики? Да, правильно, с изучения натуральных чисел и действий с ними. Натуральные числа (от лат. naturalis — естественный; естественные числа) — числа , возникающие естественным образом при счёте (например, 1, 2, 3, 4, 5, 6, 7, 8, 9…). Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом .

Существуют два подхода к определению натуральных чисел:

  1. подсчете (нумерации) предметов (первый , второй , третий , четвёртый , пятый"…);
  2. натуральные числа — числа, возникающие при обозначении количества предметов (0 предметов, 1 предмет, 2 предмета, 3 предмета, 4 предмета, 5 предметов ).

В первом случае ряд натуральных чисел начинается с единицы, во втором — с нуля. Не существует единого для большинства математиков мнения о предпочтительности первого или второго подхода (то есть считать ли ноль натуральным числом или нет). В подавляющем большинстве российских источников традиционно принят первый подход. Второй подход, например, применяется в трудах Николя Бурбаки , где натуральные числа определяются как мощности конечных множеств .

Отрицательные и нецелые ( рациональные , вещественные ,…) числа к натуральным не относят.

Множество всех натуральных чисел принято обозначать символом N (от лат. naturalis — естественный). Множество натуральных чисел является бесконечным, так как для любого натурального числа n найдётся натуральное число, большее чем n.

Наличие нуля облегчает формулировку и доказательство многих теорем арифметики натуральных чисел, поэтому при первом подходе вводится полезное понятие расширенного натурального ряда , включающего нуль. Расширенный ряд обозначается N 0 или Z 0 .

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • сложение: слагаемое + слагаемое = сумма;
  • умножение: множитель × множитель = произведение;
  • возведение в степень: a b , где a — основание степени, b — показатель степени. Если a и b — натуральные числа, то и результат будет натуральным числом.

Дополнительно рассматривают ещё две операции (с формальной точки зрения не являющиеся операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет)):

  • вычитание: уменьшаемое — вычитаемое = разность. При этом уменьшаемое должно быть больше вычитаемого (или равно ему, если считать нуль натуральным числом)
  • деление с остатком: делимое / делитель = (частное, остаток). Частное p и остаток r от деления a на b определяются так: a=p*r+b, причём 0<=r

Следует заметить, что операции сложения и умножения являются основополагающими. В частности,

Натуральные числа

Натуральные числа – это те числа, которые применяются для подсчета различных предметов или для того, чтобы указать порядковый номер какого-либо предмета среди себе подобных или однородных.

Записывать натуральные числа можно с помощью первых десяти цифр:

Для записи простых натуральных чисел принято использовать позиционную десятичную систему исчисления, где значение любой цифры определяют ее местом в записи.

Натуральные числа – это простейшие числа, часто используемые нами в повседневной жизни. С помощью этих чисел мы ведем подсчеты, считаем предметы, определяем их количество, порядок и номер.

С натуральными числами мы начинаем знакомиться с самого раннего детства, поэтому они для каждого из нас являются привычными и естественными.

Общее представление о натуральных числах

Натуральные числа предназначены для несения информации о количестве предметов, их порядковом номере и множестве предметов.

Человек использует натуральные числа, так как они ему доступны как на уровне восприятия, так и на уровне воспроизведения. При озвучивании любого натурального числа, мы с вами легко его улавливаем на слух, а изобразив натуральное число – мы его видим.

Все натуральные числа располагаются в порядке возрастания и образуют числовой ряд, начинающийся с наименьшего натурального числа, которым является единица.

Если мы определились с наименьшим натуральным числом, то с наибольшим будет посложнее, так как такого числа не существует потому, что ряд натуральных чисел является бесконечным.

При прибавлении к натуральному числу единицы, в итоге мы получим число, которое идет за данным числом.

Такая цифра, как 0 не есть натуральным числом, а только служит для обозначения числа «ноль» и значит «ни одного». 0 означает отсутствие в десятичной записи чисел единиц данного ряда.

Все натуральные числа обозначаются заглавной латинской буквой N.

Историческая справка обозначения натуральных чисел

В древние времена человек еще не знал, что такое число и как можно посчитать количество предметов. Но уже тогда возникла необходимость в счете, и человек придумал, как можно сосчитать пойманную рыбу, собранные ягоды и т.д.

Немного позже, древний человек пришел к тому, что нужное ему количество проще записать. Для этих целей первобытные люди стали использовать камешки, а потом палочки, которые сбереглись в римских цифрах.

Следующим моментом развития системы исчисления стало использование в обозначениях некоторых чисел букв алфавита.

К первым системам исчисления относится десятичная индийская система и шестидесятеричная вавилонская.

Современная система исчисления, хоть и называется арабской, но, по сути, представляет один из вариантов индийской. Правда в ее системе исчисления отсутствует цифра ноль, но арабы ее добавили, и система приобрела нынешний вид.

Десятичная система исчисления



С натуральными числами мы уже познакомись и научились записывать их с помощью десяти цифр. Также вам уже известно, что запись чисел с использованием знаков, называется системой исчисления.

Значение цифры в записи числа зависит от ее позиции и называется позиционным. То есть, при методах записи натуральных чисел, мы используем позиционную систему исчисления.

Данная система основывается на разрядности и десятичности. В десятичной системе исчисления основой для ее построения будут цифры от 0 до 9.

Особое место в такой системе отводится числу 10, так как, в основном счет ведется десятками.

Таблица классов и разрядов:



Так, например, 10 единиц объединены в десятки, далее в сотни, тысячи и тому подобное. Поэтому число 10 является основанием системы исчисления и носит название десятичной системы исчисления.

Простейшее число — это натуральное число . Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

Натуральные числа - это числа, начиная с единицы. Они образуются естественным образом при счёте. Например, 1,2,3,4,5... - первые натуральные числа.

Наименьшее натуральное число - один. Наибольшего натурального числа не существует. При счёте число ноль не используют, поэтому ноль натуральное число.

Натуральный ряд чисел - это последовательность всех натуральных чисел. Запись натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Для чтения натуральных чисел их разбивают, начиная справа, на группы по 3 цифры в каждой. 3 первые цифры справа - это класс единиц, 3 следующие - это класс тысяч, далее классы миллионов, миллиардов и так далее. Каждая из цифр класса называется его разрядом .

Сравнение натуральных чисел.

Из 2-х натуральных чисел меньше то число, которое при счете называется ранее. Например , число 7 меньше 11 (записывают так: 7 < 11 ). Когда одно число больше второго, это записывают так: 386 > 99 .

Таблица разрядов и классов чисел.

1-й класс единицы

1-й разряд единицы

2-й разряд десятки

3-й разряд сотни

2-й класс тысячи

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

3-й класс миллионы

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

  • Коммутативность сложения. a + b = b + a
  • Коммутативность умножения. ab = ba
  • Ассоциативность сложения. (a + b) + c = a + (b + c)
  • Ассоциативность умножения.
  • Дистрибутивность умножения относительно сложения:

Действия над натуральными числами.

4. Деление натуральных чисел - операция, обратная операции умножения.

Если b ∙ с = а , то

Формулы для деления:

а: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(а ∙ b) : c = (a:c) ∙ b

(а ∙ b) : c = (b:c) ∙ a

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением .

Например, 10∙3+4; (60-2∙5):10.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами . У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Сложение и вычитание чисел - это действия первой степени, а умножение и деление - это действия второй степени.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда выражения состоят из действия только первой и второй степени, то сначала выполняют действия второй степени, а потом - действия первой степени.

Когда в выражении есть скобки - сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, … В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов.

Вконтакте

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются :

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Внимание! Натуральные числа получаются при счете предметов или при обозначении их количества.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных . На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица , так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем .

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными .

Внимание! Для удобства счета существуют классы и разряды:

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью .

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы .

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при на два имеют остаток. Например, 7:2=3,5, 11:2=5,5, 23:2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50:2=25, 100:2=50, 3456:2=1728.

Важно! Числовой ряд из N не может состоять только из четных или нечетных значений, так как они должны чередоваться: за четным всегда идет нечетное, за ним снова четное и т.д.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С .
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Внимание! Все вышеперечисленные неравенства действительны и в обратном направлении.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников