Свойства соляной кислоты разбавленной и концентрированной. Сферы применения соляной кислоты

- (НСl), водный раствор хлороводорода, бесцветного газа с резким запахом. Получают действием серной кислоты на поваренную соль, как побочный продукт хлорирования углеводородов, или реакцией водорода и хлора. Соляная кислота используется, для… … Научно-технический энциклопедический словарь

Соляная кислота - – HCl (СК) (хлористоводородная кислота, хлороводородная кислот­а, хлористый водород) – это раствор хлороводорода (НСl) в воде, противоморозная добавка. Представляет собой бесцветную жидкость с резким запахом, без взвешенных ча­с­тиц.… … Энциклопедия терминов, определений и пояснений строительных материалов

- (хлористоводородная кислота) раствор хлористого водорода в воде; сильная кислота. Бесцветная, дымящая на воздухе жидкость (техническая соляная кислота желтоватая из за примесей Fe, Cl2 и др.). Максимальная концентрация (при 20 .С) 38% по массе,… … Большой Энциклопедический словарь

СОЛЯНАЯ КИСЛОТА - (Acidum muriaticum, Acid, hydrochloricum), раствор хлористого водорода (НС1) в воде. В природе встречается в воде нек рых источников вулканического происхождения, а также находится в желудочном соке (до 0,5%). Хлористый водород может быть получен … Большая медицинская энциклопедия

СОЛЯНАЯ КИСЛОТА - (хлороводородная кислота, хлористоводородная кислота) сильная одноосновная летучая кислота с резким запахом, водный раствор хлористого водорода; максимальная концентрация 38% по массе, плотность такого раствора 1,19 г/см3. Применяют в… … Российская энциклопедия по охране труда

СОЛЯНАЯ КИСЛОТА - (хлористоводородная кислота) НСl водный раствор хлористого водорода, сильная одноосновная кислота, летучая, с резким запахом; примеси железа, хлора окрашивают её в желтоватый цвет. Поступающая в продажи концентрированная С. к. содержит 37 %… … Большая политехническая энциклопедия

Сущ., кол во синонимов: 1 кислота (171) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Современная энциклопедия

Соляная кислота - СОЛЯНАЯ КИСЛОТА, водный раствор хлористого водорода HCl; дымящая на воздухе жидкость с резким запахом. Применяют соляную кислоту для получения различных хлоридов, травления металлов, обработки руд, в производстве хлора, соды, каучуков и др.… … Иллюстрированный энциклопедический словарь

- (хлороводородная кислота), раствор хлороводорода в воде; сильная кислота. Бесцветная, «дымящая» на воздухе жидкость (техническая соляная кислота желтоватая из за примесей Fe, Cl2 и др.). Максимальная концентрация (при 20°C) 38% по массе,… … Энциклопедический словарь

Соляная кислота – это однородная бесцветная жидкость с резким запахом. Является очень едким веществом, взаимодействующим с большинством металлов. Благодаря этим свойствам материал широко применяется не только в промышленности, но и в быту.

Реагент входит в состав различных средств для избавления от канализационных засоров, но его можно использовать для этой цели и самостоятельно, предварительно разбавив водой в нужных пропорциях.

Этим применение кислотного раствора в доме не ограничивается: материал используют для очистки сантехники от ржавчины и известкового налета, устранения трудновыводимых пятен с тканей и даже для удаления накипи в чайнике.

Меры предосторожности

Так как реагент имеет сильную разъедающую способность и при взаимодействии с воздухом выделяет токсичные пары, при работе с ним очень важно использовать защитные средства.

При попадании на кожные покровы и слизистые оболочки материал вызывает химические ожоги, а при продолжительном нахождении в атмосфере HCl происходит разрушение зубов, развитие катара дыхательных путей и изъязвление слизистой оболочки носа.

В целях защиты необходимо использовать противогаз, прорезиненный фартук, очки и резиновые перчатки. Работы проводить только в хорошо проветриваемых помещениях. При попадании реагента на кожу или слизистые промыть пораженный участок большим количеством проточной воды и обратиться за медицинской помощью.

Как избавиться от засоров?

Для жесткой и целенаправленной очистки канализации от органических отложений (жиров, остатков еды, волос, моющих средств и пр.) следует использовать разбавленную соляную кислоту. Этот способ не подходит для стальных, железных и пластмассовых труб, так как соединение может привести к их коррозии и даже образованию сквозных дыр.

Перед началом проведения процедуры нужно закрыть сливные отверстия в другой сантехнике и обеспечить приток воздуха в помещение. Этот шаг необходим, так как в процессе работы кислота начнет активно вырабатывать токсичные газы.

Рекомендуется развести состав водой до достижения 3-10 % концентрации, после чего залить непосредственно в канализацию и оставить на 1-2 часа. Затем нужно промыть трубы большим количеством воды и при необходимости провести процедуру повторно.

Важный момент! Не следует смешивать реагент с другими средствами для прочистки канализации, особенно на основе щелочей. В противном случае реакция этих соединений приведет к сильному повреждению труб.

Другое применение кислоты в быту

Кислотным составом можно легко очистить сантехнику из фаянса от известкового налета и ржавчины, удалить мочевой камень и другие загрязнения. Для большего эффекта к средству добавляют ингибитор (например, уротропин), замедляющий химическую реакцию.

Процедуру проводят следующим образом: кислоту разбавляют водой до достижения 5 %-ной концентрации и добавляют ингибитор из расчета 0,5 г на 1 л жидкости. Полученным составом обрабатывают поверхность и оставляют на 30-40 минут (в зависимости от степени загрязнения), после чего промывают водой.

Слабый кислотный раствор также используется для удаления пятен от ягод, чернил или ржавчины с тканей. Для этого материал замачивают в составе на некоторое время, после чего тщательно ополаскивают и стирают в обычном режиме.

Избавление от накипи в чайнике

Для этой цели используют 3-5 %-ный раствор соляной кислоты, который наливают в чайник и нагревают до 60-80° С в течение 1-2 часов или до тех пор, пока накипные отложения не распадутся. После этого накипь становится рыхлой и легко удаляется деревянной лопаточкой.

Эффективность метода обусловлена тем, что реагент вступает в реакцию с карбонатами магния и кальция и превращает их в растворимые соли. Выделяющийся при этом углекислый газ разрушает слой накипи и придает ему рыхлость. После удаления солевых отложений посуду тщательно моют чистой водой.

Важный момент! Этот способ не подходит для удаления накипи в эмалированных или алюминиевых чайниках со сколами и трещинами: это приведет к коррозии металла и его сильному повреждению.

Вывод

При соблюдении мер предосторожности и правил безопасности соляная кислота станет незаменимым помощником в быту. А приобрести ее по самым доступным ценам можно в нашей компании.


Для приготовления раствора необходимо смешать расчетные количества кислоты известной концентрации и дистиллированной воды.

Пример.

Необходимо приготовить 1 л раствора HCL концентрацией 6 % вес. из соляной кислоты концентрацией 36 % вес. (такой раствор используется в карбонатомерах КМ производства ООО НПП «Геосфера») .
По таблице 2 определите молярную концентрацию кислоты с весовой долей 6 % вес.(1,692 моль/л) и 36 % вес.(11,643 моль/л).
Рассчитайте объем концентрированной кислоты, содержащей такое же количество HCl (1.692 г-экв.), что и в приготавливаемом растворе:

1,692 / 11,643 = 0,1453 л.

Следовательно, добавив 145 мл кислоты (36 % вес.) в 853 мл дистиллированной воды, получите раствор заданной весовой концентрации.

Опыт 5. Приготовление водных растворов соляной кислоты заданной молярной концентрации.

Для приготовления раствора с нужной молярной концентрацией (Mp) необходимо один объем концентрированной кислоты (V) влить в объем (Vв) дистиллированной воды, рассчитанный по соотношению

Vв = V(M/Mp – 1)

где M – молярная концентрация исходной кислоты.
Если концентрация кислоты не известна, определите ее по плотности, используя таблицу 2 .

Пример.

Весовая концентрация используемой кислоты 36,3 % вес. Необходимо приготовить 1 л водного раствора HCL с молярной концентрацией 2,35 моль/л.
По таблице 1 найдите интерполированием значений 12,011 моль/л и 11,643 моль/л молярную концентрацию используемой кислоты:

11,643 + (12,011 – 11,643)·(36,3 – 36,0) = 11,753 моль/л

По приведенной выше формуле рассчитайте объем воды:

Vв = V (11,753 / 2,35 – 1) = 4·V

Принимая Vв + V = 1 л, получите значения объемов: Vв = 0,2 л и V = 0,8 л.

Следовательно, для приготовления раствора с молярной концентрацией 2,35 моль/л, нужно влить 200 мл HCL (36,3 % вес.) в 800 мл дистиллированной воды.

Вопросы и задания:


  1. Что такое концентрация раствора?

  2. Что такое нормальность раствора?

  3. Сколько граммов серной кислоты содержится в растворе, если на нейтрализацию израсходовано 20 мл. раствора гидроксида натрия, титр которого равен 0,004614?
ЛПЗ №5: Определение остаточного активного хлора.

Материалы и оборудование:

Ход работы:

Йодометрический метод

Реактивы:

1. Йодистый калий химически чистый кристаллический, не содержащий свободного йода.

Проверка. Взять 0,5 г йодистого калия, растворить в 10 мл дистиллированной воды, прибавить 6 мл буферной смеси и 1 мл 0,5% раствора крахмала. Посинения реактива быть не должно.

2. Буферная смесь: рН = 4.6. Смешать 102 мл молярного раствора уксусной кислоты (60 г 100% кислоты в 1 л воды) и 98 мл молярного раствора уксуснокислого натрия (136,1 г кристаллической соли в 1 л воды) и довести до 1 л дистиллированной водой, предварительно прокипяченой.

3. 0,01 Н раствор гипосульфита натрия.

4. 0,5% раствор крахмала.

5. 0,01 Н раствор двухромовокислого калия. Установка титра 0,01 Н раствора гипосульфита производится следующим образом: в колбу всыпают 0,5 г чистого йодистого калия, растворяют в 2 мл воды, прибавляют сначала 5 мл соляной кислоты (1:5), затем 10 мл 0,01 Н раствора двухромовокислого калия и 50 мл дистиллированной воды. Выделившийся йод титруют гипосульфитом натрия в присутствии 1 мл раствора крахмала, прибавляемого под конец титрования. Поправочный коэффициент к титру гипосульфита натрия рассчитывается по следующей формуле: К = 10/а, где а - количество миллилитров гипосульфита натрия, пошедшего на титрование.

Ход анализа:

а) ввести в коническую колбу 0,5 г йодистого калия;

б) прилить 2 мл дистиллированной воды;

в) перемешать содержимое колбы до растворения йодистого калия;

г) прилить 10 мл буферного раствора, если щелочность исследуемой воды не выше 7 мг/экв. Если щелочность исследуемой воды выше 7 мг/экв, то количество миллилитров буферного раствора должно быть в 1,5 раза больше щелочности исследуемой воды;

д) прилить 100 мл исследуемой воды;

е) титровать гипосульфитом до бледно-желтой окраски раствора;

ж) прилить 1 мл крахмала;

з) титровать гипосульфитом до исчезновения синей окраски.

Х = 3,55  Н  К

где Н - количество мл гипосульфита, израсходованное на титрование,

К - поправочный коэффициент к титру гипосульфита натрия.

Вопросы и задания:


  1. Что представляет собой йодометрический метод?

  2. Что такое рН?

ЛПЗ №6: Определение хлорид иона

Цель работы:

Материалы и оборудование: вода питьевая, лакмусовая бумага, беззольный фильтр, хромовокислый калий, азотнокислое серебро, титрованный раствор хлорида натрия,

Ход работы:

В зависимости от результатов качественного определения отбирают 100 см 3 испытуемой воды или меньший ее объем (10-50 см 3) и доводят до 100 см 3 дистиллированной водой. Без разбавления определяются хлориды в концентрации до 100 мг/дм 3 . pН титруемой пробы должен быть в пределах 6-10. Если вода мутная, ее фильтруют через беззольный фильтр, промытый горячей водой. Если вода имеет цветность выше 30°, пробу обесцвечивают добавлением гидроокиси алюминия. Для этого к 200 см 3 пробы добавляют 6 см 3 суспензии гидроокиси алюминия, а смесь встряхивают до обесцвечивания жидкости. Затем пробу фильтруют через беззольный фильтр. Первые порции фильтрата отбрасывают. Отмеренный объем воды вносят в две конические колбы и прибавляют по 1 см 3 раствора хромовокислого калия. Одну пробу титруют раствором азотнокислого серебра до появления слабого оранжевого оттенка, вторую пробу используют в качестве контрольной пробы. При значительном содержании хлоридов образуется осадок AgCl , мешающий определению. В этом случае к оттитрованной первой пробе приливают 2-3 капли титрованного раствора NaCl до исчезновения оранжевого оттенка, затем титруют вторую пробу, пользуясь первой, как контрольной пробой.

Определению мешают: ортофосфаты в концентрации, превышающей 25 мг/дм 3 ; железо в концентрации более 10 мг/дм 3 . Бромиды и йодиды определяются в концентрациях, эквивалентных Сl - . При обычном содержании в водопроводной воде они не мешают определению.

2.5. Обработка результатов.

где v - количество азотнокислого серебра, израсходованное на титрование, см 3 ;

К - поправочный коэффициент к титру раствора нитрата серебра;

g - количество хлор-иона, соответствующее 1 см 3 раствора азотнокислого серебра, мг;

V - объем пробы, взятый для определения, см 3 .

Вопросы и задания:


  1. Способы определения хлорид ионов?

  2. Кондуктометрический метод определения хлорид ионов?

  3. Аргентометрия.
ЛПЗ №7 «Определение общей жесткости воды»

Цель работы:

Материалы и оборудование:

Опыт 1. Определение общей жесткости водопроводной воды

Отмерить мерным цилиндром 50 мл водопроводной воды (из-под крана) и перелить её в колбу емкостью 250 мл, добавить 5 мл аммиачно-буферного раствора и индикатор – эриохром черный Т – до появления розовой окраски (несколько капель или несколько кристаллов). Заполнить бюретку раствором ЭДТА 0,04 н (синонимы – трилон Б, комплексон III) до нулевой отметки.

Приготовленную пробу медленно при постоянном перемешивании оттитровать раствором комплексона III до перехода розовой окраски в голубую. Результат титрования записать. Повторить титрование ещё один раз.

Если разница результатов титрований превышает 0,1 мл, то оттитровать пробу воды третий раз. Определить средний объем комплексона III (V К, СР) израсходованного на титрование воды, и по нему рассчитать общую жесткость воды.

Ж ОБЩ = , (20) где V 1 – объём анализируемой воды, мл; V К,СР – средний объём раствора комплексона III, мл; N К – нормальная концентрация раствора комплексона III, моль/л; 1000 – коэффициент перевода моль/л в ммоль/л.

Результаты опыта записать в таблицу:


V К,СР

N К

V 1

Ж ОБЩ

Пример 1. Вычислить жесткость воды, зная, что в 500 л её содержится 202,5 г Ca(HCO 3) 2 .

Решение. В 1 л воды содержится 202,5:500 = 0,405 г Ca(HCO 3) 2 . Эквивалентная масса Ca(HCO 3) 2 равна 162:2 = 81 г/моль. Следовательно, 0,405 г составляют 0,405:81 = 0,005 эквивалентных масс или 5 ммоль экв/л.

Пример 2. Сколько граммов CaSO 4 содержится в одном кубометре воды, если жесткость, обусловленная присутствием этой соли, равна 4 ммоль эк

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие катионы называются ионами жесткости?

2. Какой технологический показатель качества воды называют жесткостью?

3. Почему жесткую воду нельзя применять для регенерации пара на тепловых и атомных электростанциях?

4. Какой метод умягчения называют термическим? Какие химические реакции протекают при умягчении воды этим методом?

5. Как осуществляют умягчения воды методом осаждения? Какие реагенты используют? Какие реакции протекают?

6. Можно ли умягчать воду с помощью ионного обмена?

ЛПЗ №8 «Фотоколориметрическое определение содержания элементов в растворе»

Цель работы: изучить устройство и принцип действия фотоколориметра КФК - 2

ФОТОЭЛЕКТРОКОЛОРИМЕТРЫ. Фотоэлектроколориметр – это оптический прибор, в котором монохроматизация потока излучения осуществляется с помощью светофильтров. Колориметр фотоэлектрический концентрационный КФК – 2.

Назначение и технические данные. Однолучевой фотоколориметр КФК - 2

предназначен для измерения пропускания, оптической плотности и концентрации окрашенных растворов, рассеивающих взвесей, эмульсий и коллоидных растворов в области спектра 315–980 нм. Весь спектральный диапазон разбит на спектральные интервалы, выделяемые с помощью светофильтров. Пределы измерения пропускания от 100 до 5% (оптической плотности от 0 до 1,3). Основная абсолютная погрешность измерения пропускания не более 1%. Рис. Общий вид КФК-2. 1 - осветитель; 2 - рукоятка ввода цветных светофильтров; 3 - кюветное отделение; 4 - рукоятка перемещения кювет; 5 - рукоятка (ввода фотоприемников в световой поток) «Чувствительность»; 6 - рукоятка настройки прибора на 100%-е пропуска- ние; 7 - микроамперметр. Светофильтры. Для того чтобы из всей видимой области спектра выделить лучи определенных длин волн в фотоколориметрах на пути световых потоков перед поглощающими растворами устанавливают избирательные поглотители света – светофильтры. Порядок работы

1. Включите колориметр в сеть за 15 минут до начала измерений. Во время прогрева кюветное отделение должно быть открыто (при этом шторка перед фотоприемником перекрывает световой пучок).

2. Введите рабочий светофильтр.

3. Установите минимальную чувствительность колориметра. Для этого ручку "ЧУВСТВИТЕЛЬНОСТЬ" установите в положение «1», ручку "УСТАНОВКА 100 ГРУБО" – в крайнее левое положение.

4. Стрелку колориметра вывести на нуль с помощью потенциометра «НУЛЬ».

5. В световой пучок поместите кювету с контрольным раствором.

6. Закройте крышку кюветного отделения

7. Ручками "ЧУВСТВИТЕЛЬНОСТЬ" и "УСТАНОВКА 100 ГРУБО" и "ТОЧ- НО" установите стрелку микроамперметра на деление «100» шкалы пропускания.

8. Поворотом рукоятки кюветной камеры поместите в световой поток кювету с исследуемым раствором.

9. Снимите показания по шкале колориметра в соответствующих единицах (Т% или Д).

10. После окончания работы отключите колориметр от сети, очистите и протрите насухо кюветную камеру. Определение концентрации вещества в растворе с помощью КФК-2. При определении концентрации вещества в растворе с помощью калибро- вочного графика следует соблюдать следующую последовательность:

исследуйте три образца раствора перманганата калия различной концентрации результаты запишите в журнал.

Вопросы и задания:


    1. Устройство и принцип действия КФК – 2
5.Информационное обеспечение обучения (перечень рекомендуемых учебных из­даний. Интернет-ресурсов, дополнительной литературы)

Основная литература для студентов:

1. Курс опорных конспектов по программе ОП.06 Основы аналитической химии.-пособие /А.Г.Бекмухамедова- преподаватель общепрофессиональных дисциплин АСХТ- Филиал ФГБОУ ВПО ОГАУ; 2014г.

Дополнительная литература для студентов:

1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.-Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

Основная литература для преподавателей:

1. 1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.- Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

2.Клюквина Е.Ю. Лабораторная тетрадь по аналитической химии.- Оренбург: Издательский центр ОГАУ, 2012 г.-68 стр

Дополнительная литература для преподавателей:

1. 1.Клюквина Е.Ю. Основы общей и неорганической химии: учебное пособие/ Е.Ю. Клюквина, С.Г.Безрядин.-2-е изд.-Оренбург. Издательский центр ОГАУ,2011г.-508 стр.

2.Клюквина Е.Ю. Лабораторная тетрадь по аналитической химии.- Оренбург: Издательский центр ОГАУ, 2012 г.-68 стр

Для безопасности и простоты применения рекомендуется покупать максимально разбавленную кислоту, но иногда ее приходится разбавлять еще больше в домашних условиях. Не забудьте о защитных средствах для тела и лица, поскольку концентрированные кислоты вызывают сильные химические ожоги. Чтобы рассчитать необходимое количество кислоты и воды, вам нужно будет знать молярность (М) кислоты и молярность раствора, который вам нужно получить.

Шаги

Как рассчитать формулу

    Изучите то, что у вас уже есть. Найдите обозначение концентрации кислоты на упаковке или в описании задачи. Обычно это значение указывают как молярность, или молярную концентрацию (кратко - М). Например, в кислоте 6М содержится 6 молей молекул кислоты на литр. Назовем эту начальную концентрацию C 1 .

    • В формуле также будет использоваться значение V 1 . Это объем кислоты, которую мы будем добавлять к воде. Скорее всего, нам не потребуется вся бутылка кислоты, хотя мы еще не знаем точное количество.
  1. Решите, каким должен быть результат. Требуемая концентрация и объем кислоты обычно указываются в тексте задачи по химии. Например, нам нужно развести кислоту до значения 2M, и нам потребуется 0.5 литра воды. Обозначим требуемую концентрацию как C 2 , а требуемый объем - как V 2 .

    • Если вам даны другие единицы, для начала переведите их в единицы молярности (моль на литр) и литры.
    • Если вы не знаете, какая нужна концентрация или объем кислоты, спросите у учителя или человека, хорошо разбирающегося в химии.
  2. Напишите формулу для расчета концентрации. Каждый раз при разведении кислоты вы будете пользоваться следующей формулой: C 1 V 1 = C 2 V 2 . Это означает, что первоначальная концентрация раствора, умноженная на его объем, равняется концентрации разведенного раствора, умноженной на его объем. Мы знаем, что это соответствует действительности, поскольку концентрация, умноженная на объем, равняется общему количеству кислоты, а общее количество кислоты будет оставаться неизменным.

    • Используя данные из примера, запишем эту формулу как (6M)(V 1)=(2M)(0.5L) .
  3. Решите уравнение V 1 . Значение V 1 скажет нам, сколько нам нужно концентрированной кислоты, чтобы получить желаемую концентрацию и объем. Перепишем формулу как V 1 =(C 2 V 2)/(C 1) , затем подставим известные числа.

    • В нашем примере получится V 1 =((2M)(0.5L))/(6M). Это равняется приблизительно 167 миллилитрам.
  4. Рассчитайте необходимое количество воды. Зная V 1 , то есть имеющийся объем кислоты, и V 2 , то есть количество раствора, которое у вас получится, можно с легкостью рассчитать, сколько воды вам потребуется. V 2 - V 1 = необходимый объем воды.

    • В нашем случае мы хотим получить 0.167 литров кислоты на 0.5 литра воды. Нам потребуется 0.5 литра - 0.167 литров = 0.333 литра, то есть 333 миллилитра.
  5. Наденьте защитные очки, перчатки и халат. Вам потребуются специальные очки, которые закроют глаза и по бокам. Чтобы не обжечь кожу и не прожечь одежду, наденьте перчатки и халат либо передник.

    Работайте в хорошо проветриваемом помещении. По возможности работайте под включенной вытяжкой - это не даст парам кислоты навредить вам и окружающим предметам. Если у вас нет вытяжки, откройте все окна и двери либо включите вентилятор.

  6. Выясните, где находится источник проточной воды. Если кислота попадет в глаза или на кожу, вам нужно будет промыть пострадавший участок под прохладной проточной водой 15-20 минут. Не приступайте к работе, пока не выясните, где находится ближайшая раковина.

    • Промывая глаза, держите их открытыми. Смотрите вверх, вниз, в стороны, чтобы глаза промылись со всех сторон.
  7. Знайте, что делать, если прольете кислоту. Можно купить специальный набор для сбора разлитой кислоты, в который будет входить все необходимое, или приобрести нейтрализаторы и абсорбенты отдельно. Процесс, описанный ниже, применим к соляной, серной, азотной и фосфорной кислотам. Прочие кислоты могут требовать другого обращения.

    • Проветрите помещение, открыв окна и двери и включив вытяжку и вентилятор.
    • Нанесите немного карбоната натрия (соды), бикарбоната натрия или карбоната кальция на внешние края лужи, не допуская расплескивания кислоты.
    • Постепенно засыпайте всю лужу к центру, пока не покроете ее нейтрализующим веществом целиком.
    • Тщательно перемешайте пластиковой палочкой. Проверьте значение pH лужи лакмусовой бумажкой. Добавьте еще нейтрализующего вещества, если это значение превышает 6-8, а затем промойте это место большим количеством воды.

Как разбавить кислоту

  1. Охладите воду с помощью люда. Это нужно делать только в том случае, если вы будете работать с кислотами в большой концентрации, к примеру, с серной кислотой 18М или с соляной кислотой 12M. Налейте воду в емкость, поставьте емкость на лед минимум на 20 минут.

    • Чаще всего достаточно воды комнатной температуры.
  2. Налейте дистиллированную воду в большую колбу. Для задач, требующих предельной точности (например, для титриметрического анализа), используйте мерную колбу. Для всех остальных целей подойдет обычная коническая колба. В емкость должен поместиться весь требуемый объем жидкости, а также должно остаться место, чтобы жидкость не расплескалась.

    • Если вместительность емкости известна, нет необходимости точно отмерять количество воды.
  3. Добавьте небольшое количество кислоты. Если вы работаете с маленьким количеством воды, воспользуйтесь градуированной или измерительной пипеткой с резиновым наконечником. Если объем большой, вставьте в колбу воронку и небольшими порциями аккуратно перелейте кислоту пипеткой.

1,2679; Г крнт 51,4°С, p крит 8,258 МПа, d крит 0,42 г/см 3 ; -92,31 кДж/ , D H пл 1,9924 кДж/ (-114,22°С), D H исп 16,1421 кДж/ (-8,05°С);186,79 Дж/(моль·К); (Па): 133,32·10 -6 (-200,7°С), 2,775·10 3 (-130,15°С), 10,0·10 4 (-85,1 °С), 74,0·10 4 (-40°С), 24,95 · 10 5 (О °С), 76,9 · 10 5 (50 °С); ур-ние температурной зависимости lgp(кПа) = -905,53/Т+ 1,75lgT- -500,77·10 -5 T+3,78229 (160-260 К); коэф. 0,00787; g 23 мН/см (-155°С); r 0,29·10 7 Ом·м (-85°С), 0,59·10 7 (-114,22°С). См. также табл. 1.


Р-римость НС1 в при 25 °С и 0,1 МПа (мол. %): в пентане-0,47, гексане-1,12, гептане-1,47, октане-1,63. Р-римость НС1 в алкил- и арилгалогенидах невелика, напр. 0,07 / для С 4 Н 9 С1. Р-римость в интервале от -20 до 60° С уменьшается в ряду дихлорэтан-три-хлорэтан-тетрахлорэтан-трихлорэтилен. Р-римость при 10°С в ряде составляет примерно 1 / , в эфирах карбоновых к-т 0,6 / , в карбо-новых к-тах 0,2 / . В образуются устойчивые R 2 O · НСl. Р-римость НС1 в подчиняется и составляет для КСl 2,51·10 -4 (800°С), 1,75·10 -4 / (900°С), для NaCl 1,90·10 -4 / (900 °С).

Соляная к-та. НСl в воде-сильно экзо-термич. процесс, для бесконечно разб. водного р-ра D H 0 НСl -69,9 кДж/ , Сl - - 167,080 кДж/ ; НС1 в полностью ионизирован. Р-римость НС1 в зависит от т-ры (табл. 2) и парциального НС1 в газовой смеси. Плотность соляной разл. и h при 20 °С представлены в табл. 3 и 4. С повышением т-ры h соляной понижается, напр.: для 23,05%-ной соляной при 25 °С h 1364мПа·с, при 35 °С 1,170 мПа·с.соляной , содержащей h на 1 НС1, составляет [кДж/(кг·К)]: 3,136 (п = 10), 3,580 (п = 20), 3,902 (п =50), 4,036 (n = 100), 4,061 (п = 200).






НСl образует с (табл. 5). В системе HCl-вода существует три эвтектич. точки: - 74,7 °С (23,0% по массе НСl); -73,0°С (26,5% НСl); -87,5°С (24,8% НС1, метастабильная фаза). Известны НСl·nН 2 О, где n = 8, 6 (т. пл. -40 °С), 4, 3 (т. пл. -24,4°С), 2 (т. пл. -17,7°С) и 1 (т. пл. -15,35°С). кристаллизуется из 10%-ной соляной при -20, из 15%-ной-при -30, из 20%-ной-при -60 и из 24%-ной-при -80°С. Р-римость галогенидов с увеличением НСl в соляной падает, что используют для их .

Химические свойства. Чистый сухой НСl начинает диссоциировать выше 1500°С, химически пассивен. Мн. , С, S, P не взаимод. даже с жидким НСl. С , реагирует выше 650 °С, с Si, Ge и В-в присут. АlСl 3 , с переходных металлов-при 300 °С и выше. Окисляется О 2 и HNO 3 до Сl 2 , с SO 3 дает C1SO 3 H. О р-циях с орг. соединениями см. .

С оляная химически весьма активна. Растворяет с выделением Н 2 все , имеющие отрицат. , со мн. и образует , выделяет своб. к-ты из таких , как , и др.

Получение. В пром-сти НСl получают след. способами-сульфатным, синтетич. и из абгазов (побочных ) ряда процессов. Первые два метода теряют свое значение. Так, в США в 1965 доля абгазной соляной составляла 77,6% в общем объеме произ-ва, а в 1982-94%.

Произ-во соляной (реактивной, полученной сульфатным способом, синтетич., абгазной) заключается в получении НСl с послед. его . В зависимости от способа отвода теплоты (достигает 72,8 кДж/) процессы разделяются на изотермич., адиабатич. и комбинированные.

Сульфатный метод основан на взаимод. NaCl с конц. H 2 SO 4 при 500-550 °С. Реакц. содержат от 50-65% НСl (муфельные ) до 5% НСl (реактор с ). Предложено заменить H 2 SO 4 смесью SO 2 и О 2 (т-ра процесса ок. 540 °С, кат.-Fе 2 О 3).

В основе прямого синтеза НСl лежит цепная р-ция : Н 2 + Сl 2 2НСl+184,7кДж К р рассчитывается по ур-нию: lgK p = 9554/T- 0,5331g T+ 2,42.

Р-ция инициируется светом, влагой, твердыми пористыми ( , пористая Pt) и нек-рыми минер. в-вами ( , ). Синтез, ведут с избытком Н 2 (5-10%) в камерах сжигания, выполненных из стали, огнеупорного кирпича. Наиб. совр. материал, предотвращающий загрязнение НСl,-графит, импрегнированный фе-ноло-формальд. смолами. Для предотвращения взрывного характера смешивают непосредственно в факеле пламени горелки. В верх. зоне камер сжигания устанавливают для охлаждения реакц. до 150-160°С. Мощность совр. графитовых достигает 65 т/сут (в пересчете на 35%-ную соляную ). В случае дефицита Н 2 применяют разл. модификации процесса; напр., пропускают смесь Сl 2 с водяным через слой пористого раскаленного :

2Сl 2 + 2Н 2 О + С : 4НСl + СО 2 + 288,9 кДж

Т-ра процесса (1000-1600 °С) зависит от типа и наличия в нем примесей, являющихся (напр., Fe 2 O 3). Перспективно использование смеси СО с :

СО + Н 2 О + Сl 2 : 2НСl + СО 2

Более 90% соляной в развитых странах получают из абгаз-ного НСl, образующегося при и дегидрохло-рировании орг. соединений, хлорорг. отходов, получении калийных нехлорир. и др. Абгазы содержат разл. кол-ва НС1, инертные примеси (N 2 , H 2 , СН 4), малорастворимые в орг. в-ва ( , ), водорастворимые в-ва (уксусная к-та, ), кислые примеси (Сl 2 , HF, О 2) и . Применение изотермич. целесообразно при низком содержании НС1 в абгазах (но при содержании инертных примесей менее 40%). Наиб. перспективны пленочные , позволяющие извлекать из исходного абгаза от 65 до 85% НСl.

Наиб. широко применяют схемы адиабатич. . Абгазы вводят в ниж. часть , а (или разбавленную соляную )-противотоком в верхнюю. Соляная нагревается до т-ры благодаря теплоте НСl. Изменение т-ры и НСl дано на рис. 1. Т-ра определяется т-рой к-ты соответствующей (макс. т-ра-т. кип. азеотропной смеси-ок. 110°С).

На рис. 2 дана типовая схема адиабатич. НСl из абгазов, образующихся при (напр., получение ). НСl поглощается в 1, а остатки малорастворимых в орг. в-в отделяют от после в аппарате 2, доочищают в хвостовой колонне 4 и сепараторах 3, 5 и получают товарную соляную .



Рис. 1. Схема распределения т-р (кривая 1) и