Первые трансатлантические кабели — когда они появились и как работали? Телекоммуникационное право. История. Проводная связь

Загадочный 19-ый век, о котором мы так мало знаем!
Современным правителям мира очень выгодно держать нас в неведении относительно уровня технологий и промышленного производства того времени, так как они выдают сегодняшнюю техническую и технологическую деградацию за прогресс.
Для того, чтобы убедиться, насколько нагло нас обманывают, рассмотрим историю телеграфа, а именно, прокладку подводных линий
телеграфного кабеля 19-го века. Такую прокладку невозможно было осуществить без применения технологий, приборов и оборудования, сходных с современными, тогда как нам преподносят намного более примитивные технологии.
История телеграфа как на ладони показывает нам, насколько фальшива официальная история науки.
К 1900 году проложено дессятки тысяч километров линий подводного телеграфа-это факт, телеграфная связь-есть.
С другой стороны, технологий, измерительных приборов, компЬютеров, спутников, кабелеукладчиков-официально нет, все эти современные технологии, которыми мы пользуемся сейчас при прокладке глубоководных кабелей, появились только во 2-ой половине 20-го века!

1904 Karte des Weltkabelnetzes (Map of the World Cable Network)
from Oskar Moll: Die Unterseekabel in Wort und Bild.

Данное видео рассказывает, как проводится трансокеаническая укладка кабелей:

Трансокеанические подводные кабели связи

В 1858 году была установлена трансатлантическая телеграфная связь. Затем был проложен кабель в Африку, что позволило в 1870 году установить прямую телеграфную связь Лондон — Бомбей (через релейную станцию в Египте и на Мальте).


Основные телеграфные линии на 1891 год

Первые попытки

Первый подводный кабель, передающий электрический сигнал, был проложен в Мюнхене вдоль реки Изар. Однако из-за отсутствия достаточной гидроизоляции длительная эксплуатация подобного кабеля не представлялась возможной. Лишь изобретение в 1847 году Сименсом технологии изготовления изоляции из гуттаперчи позволило начать работы по прокладке кабеля между Кале и Дувром, который разорвался после пересылки первой же телеграммы, год спустя была попытка заменить его армированным кабелем, однако и последний прослужил недолго.

1856—1858 гг

Развитие подводного телеграфа шло трудным путём ошибок, катастроф, разочарований. Однако успешная прокладка ряда линий привела к мысли о возможности пересечь телеграфным кабелем Атлантический океан.

Трансатлантический кабель

Англия, обладавшая огромными заморскими владениями и имевшая технические возможности, неизбежно должна была стать пионером прокладки подводных кабелей, и не удивительно, что она удерживала первенство в течение почти ста лет. Однако инициатива организации прокладки первого трансатлантического кабеля всё же принадлежит Америке — её подданному Сайрусу Уэсту Филду, который организовал в 1856 году «Трансатлантическую компанию».

Больше всего вопросов в проекте было к электрической проводимости кабеля. Неясно было, сможет ли электрический ток пробежать огромное расстояние в 4 — 5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самюэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. В ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. Ток легко прошел через громадную цепь, и с этой стороны больше сомнений не было.

В 1856 году было основано акционерное общество «Atlantic Telegraph Company», которое в 1857 году приступило к укладке 4500 километров армированного телеграфного кабеля. Корабли «Агамемнон» и «Ниагара» начали прокладку от берегов Ирландии, однако из-за потери кабеля попытку пришлось отложить.
После произошедшей в начале 1857 года второй безуспешной попытки, лишь с третьей (июль 1858 года) удалось проложить кабель от берегов Ирландии до Ньюфаундленда, 5 августа была установлена трансатлантическая телеграфная связь. 16 августа 1858 королева Великобритании Виктория и тогдашний президент США Джеймс Бьюкенен обменялись поздравительными телеграммами. Приветствие английской королевы состояло из 103 слов, передача которых длилась 16 часов. В сентябре 1858 года связь была нарушена, видимо, ввиду недостаточной гидроизоляции кабель был разрушен коррозией.

В 1864 году началась укладка 5100 км кабеля с улучшенной изоляцией, в качестве кабелеукладчика было решено задействовать крупнейшее судно тех времён — британский пароход «Грейт Истерн» водоизмещением 32 тыс. т. 31 июля 1865 года при укладке произошёл обрыв кабеля. Лишь в 1866 году со второй попытки удалось уложить кабель, который обеспечил долговременную телеграфную связь между Европой и Америкой. Любопытно отметить, что оборванный в 1865 году кабель был обнаружен, после чего скреплен с недостающим фрагментом и смог успешно функционировать.

Основные телеграфные линии в 1891 г.
Несколько лет спустя был проложен кабель в Индию, что позволило в 1870 году установить прямую телеграфную связь Лондон — Бомбей (через релейную станцию в Египте и на Мальте).

Океаническое дно в разрезе от Валенсии, Ирландия до Ньюфаундленда.

Vertical section of the bed of the Atlantic Ocean,
from Valencia, Ireland, to Trinity Bay, Newfoundland,
(on line C.D of chart above) showing Soundings
made by Lieut. Dayman in H.M.S. Cyclops, 1857,
for laying the Atlantic Telegraph Cable.
(The Vertical scale, showing depths of soundings,
is about 72 times greater than the longitudinal scale.)

Эхолот
Материал из GeoWiki - открытой энциклопедии по наукам о Земле.
Прибор для измерения глубины океана на основе измерения времени получения отражённого от морского дна сигнала (звукового, радио и т.п.) при его известной скорости.
Метод эхолокации является основным при картировании морского дна.
Каким образом удалось сделать этот "портрет" океанического дна, какими приборами?
И какими навигационные приборы использовались, чтобы проложить кабель точно
по курсу, не сбившись на -/+ 1-2 км? В то время были точнейшие навигационные технологии?

Эхолот — узкоспециализированный гидролокатор, устройство для исследования рельефа дна водного бассейна. Обычно использует ультразвуковой передатчик и приёмник, а также ЭВМ для обработки полученных данных и отрисовки топографической карты дна.

из истории эхолота:

" Особого интереса к исследованию глубин океана до XIX в. моряки не проявляли, так как полагали, что рельеф морского дна как бы отражает рельеф суши, т. е. считалось, что наибольшие значения глубин соответствуют высотам близлежащих вершин. Среднюю глубину океанов принимали равной среднему возвышению материков.
В начале XIX в. интерес к промерным работам, а следовательно, и к средствам измерения глубин резко возрос. Ученые и мореплаватели поняли, что изучение морей и океанов невозможно без изучения характера рельефа дна и его особенностей. Необходимы были систематические специальные промеры в морях и океанах, а для этого нужны были соответствующие инструменты для измерения больших глубин.
За XIX столетие одних патентов на измерители глубины было выдано более ста.
Первый ультразвуковой эхолот был запатентован в 1920 г. русским ученым и изобретателем К. В. Шиловским и французским ученым П. Ланжевеном, который в 1929 г. был избран почетным членом АН СССР.
Испытания эхолота проводились в течение нескольких лет в проливе Ла-Манш и в Средиземном море и полностью подтвердили правильность выбранных технических решений. С этого момента начинается этап развития ультразвуковых эхолотов, позволяющих автоматически и непрерывно, при любой погоде и на разных скоростях измерять любые глубины Мирового океана. "
В истории измерительных приборов глубины морского и океанического дна нет указания на то, что до начала 20-го века существовали надёжные измерительные приборы, которые бы дали заслуживающие доверия промеры глубины мирового океана глубиной до 5-8 км. То есть, официально эхолотов до начала 20-го века не существовало, измеряли более простыми и менее надёжными приборами.
Мало иметь эхолот, чтобы сделать топографическую карту морского дна. Надо ещё уметь обработать данные, которые получаются при его использовании. Сейчас мы эти данные обрабатываем с помощью ЭВМ.
Но первая вычислительная машина Z3, обладающая всеми свойствами современного компьютера, была создана Конрадом Цузе только в 1941 году!

Навигация в открытом море или в открытом океане про прокладке подводного кабеля чрезвычайно важна, нужно учитывать отклонения от курса всввязи с ветром или течением.
В конце XIX — начале XX веков успехи в развитии физики послужили основой создания электронавигационных приборов и радиотехнических средств судовождения. Конкретной информации, какие навигазионные приборы использовали при прокладке трансокеанических кабелей в 1850-1900 гг, в сети нет, надо обращаться в архивы и спецбиблиотеки.

"После конференции главных морских держав в Брюсселе в 1853 г., на которой обсуждались принципы метеорологических наблюдений на море, в Великобритании была создана должность метеоролога-статистика при Комитете по торговле, на которую был назначен Роберт Фицрой. Ему было дано несколько помощников. Так было положено начало первому в истории государственному метеорологическому ведомству — метеослужбе Великобритании.
Во время Крымской войны 14 ноября 1854 года буря разбила 60 британских и французских кораблей. После этого в конце ноября директор Парижской обсерватории Урбен Леверье обратился с просьбой к знакомым европейским учёным прислать ему сводки о состоянии погоды в период с 12 по 16 ноября. Когда сводки были получены и данные нанесли на карту, стало ясно, что ураган, потопивший корабли в Чёрном море, можно было предвидеть заранее. В феврале 1855 г. Леверье подготовил доклад Наполеону III о перспективах создания централизованной метеорологической сети наблюдений с передачей сведений по телеграфу. Уже 19 февраля Леверье составил первую карту погодной обстановки, сформированную по данным, полученным в реальном времени."

Коммерческая эксплуатация электрического телеграфа впервые была начата в Лондоне в 1837 году.
В 1858 году была установлена трансатлантическая телеграфная связь.
Вся загвоздка в том, чтобы составить прогноз погоды на несколько дней, надо собрать сведения с большого региона, но каким образом, если только в 1858 году была установлена трансатлантическая телеграфная связь?
Получается замкнутый круг: прогноз погоды составлялся в реальном времени с использованием телеграфа, а сам международный телеграф опутал своей паутиной мир лишь к 1865 году. Как проходил анализ собранного в реальном времени колоссального количества данных, чтобы сделать надёжный прогноз погоды?

Обратите внимание, что подводный кабель проложен на кратчайшем расстоянии между Европой и Северной Америкой. Как без космических технологий удалось вычислить, что именно это расстояние является кратчайшим и провести кабель из точки А в точку Б с его минимальным расходом?

Прокладка подводных линий телеграфа шла во второй половине 19-го века семимильными шагами,
проследите историю, если по этой ссылке можно найти более детальное изображение:

Map of the 1858 Atlantic Cable route from
Frank Leslie"s Illustrated Newspaper, August 21, 1858

Another map of the 1858 Atlantic Cable route.

Detail of above map

Australia and China Telegraph, 1859
Existing and proposed lines

1865: Map Shewing the Atlantic Telegraph and other Submarine
Cables in Europe and America from The Atlantic Telegraph.

1865: Chart of the World Showing the Proposed Submarine & Land
Telegraphs Round the World from The Atlantic Telegraph.

1870 British Indian Cable
Bombay-Aden, Aden-Suez

c. 1870 Map showing the telegraph lines in operation, under contract, and contemplated, to complete the circuit of the globe / entered according to Act of Congress in the year 1855 by J.H. Colton & Co. in the Clerks Office of the District Court for the Southern District of New York. 41cm x 63cm. Image courtesy of the Library of Congress, call number G3201.P92 1855 .J51

c. 1880 Anglo-American Telegraph Company North Atlantic map

1893 map of North Atlantic cables (center section omitted),
from Charles Bright"s Submarine Telegraphs

Map of the Philippines, showing route of the cable laid by CS Burnside in 1901,
from Florence Kimball Russell"s A Woman"s Journey through the Philippines

1901 Eastern Telegraph Company System Map
from A.B.C. Telegraphic Code 5th Edition

Carte générale des grandes communications télégraphiques du monde, 1901/03
International Telegraph Bureau (Berne, Switzerland)

North Atlantic detail of above map

Great Britain detail of above map

1902 British All Red Line map, from Johnson"s
The All Red Line - The Annals and Aims of the Pacific Cable Project

1924: The Eastern Associated Telegraph Companies" Cable System map

1924 International Cables map from Schreiner: Cables and Wireless

Cable and Wireless “Via Imperial” map. Undated, but post-1935
Courtesy of Anita Fuller, whose father, Colin Hugh Thomas

Интерактивная карта, на которой вы можете посмотреть историю прокладки кабеля :

Карты подводных кабелей:

Укладка кабеля

Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля — это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным , так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. Проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.
Стоит заметить, что в траншеи кабель укладывается на глубинах до 1500-2000 м из-за рыболовецкой деятельности и прочих факторов. В подобных ситуациях приходится использовать ножевой принцип укладки или по-простому опускать на дно морское гигантских размеров плуг, который его вспашет и позволит обезопасить кабель от снастей и прочих неприятностей. На больших глубинах по понятным причинам используются мощные, армированные кабели которые просто укладываются на грунт.
Если в случае малых дистанций используется цельный кусок кабеля, то при прокладке в море расстояния увеличиваются в разы, а погонная длина бухты кабеля ограничена. Плюс ко всему, при передаче сигнала на большие расстояния происходит его искажение и затухание. Для компенсации этих потерь, учитывая конструкцию кабеля описанную в предыдущей статье, в местах сращивания или на других необходимых участках используют усилители сигнала и ретрансляторы. Проблем с питанием не возникает, конструкция оптоволоконного кабеля подразумевает возможность передачи тока от которого и запитывается оборудование размещаемое на дистанции до 150 км друг от друга.

Вот так выглядит усилитель сигнала до установки монтажа, в частичном разборе:

А так он выглядит уже готовый к укладке на дне океана:

Собственно, из гифки процесс укладки становится предельно ясным:

черное устройство, схематически изображенноe на гифке,называется подводный кабелеукладчик.
Обычный подводный кабелеукладчик прорывает не очень широкую, 0.1 — 0.2 м, и неглубокую, ~0.7 м, траншею, в которую закладывается кабель. Само оборудование буксируется судном со скоростью примерно 3 км/ч и связано с ним отдельным кабелем для контроля состояния самого устройства и проводимых им работ.

Прокладка кабеля под водой - Fugro - kalipso

Прокладка кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:

Если Вам кажется, что она маловата, то обратите внимание на это фото:


После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.

Выглядит со стороны это так:

При каких-либо проблемах, обрывах, или повреждениях на кабеле предусмотрены специальные якоря, которые позволяют поднять его к поверхности и отремонтировать проблемный участок линии.

Устройство кабеля :

Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:

Долговечность
Быть водонепроницаемым
Выдерживать огромное давление водных масс над собой
Обладать достаточной прочностью для укладки и эксплуатации
Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики
Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации.

Производство кабеля

Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.

SubCom (бывшая Tyco Telecommunications) - лидер отрасли в создании подводных коммуникационных систем. Компанией проложено более 490,000 км подводных кабелей в более чем 100 подводных волоконно-оптических системах, обеспечивающих связь по всему миру.
ПОДВОДНЫЕ ТРАНСОКЕАНИЧЕСКИЕ КАБЕЛЬНЫЕ СЕТИ: КАК ЭТО ДЕЛАЕТСЯ - ВИДЕО И АНИМАЦИИ

Касательно прокладки компанией Google собственного оптоволоконного кабеля связи по дну Тихого океана, который свяжет дата-центры компании в штате Орегон, США, с Японией. Казалось бы, это огромный проект стоимостью $ 300 млн. и длинной в 10 000 км. Однако, если копнуть немного глубже станет ясно, что данный проект является выдающимся только потому, что это будет делать один медийный гигант для личного использования. Вся планета уже плотно опутана кабелями связи и под водой их намного больше, чем кажется на первый взгляд. Заинтересовавшись этой темой я подготовил общеобразовательный материал для любопытствующих.

Истоки межконтинентальной связи

Практика прокладывания кабеля через океан берет начало еще с XIX века. Как сообщает википедия , первые попытки соединить два континента проводной связью были предприняты еще в 1847 году. Успешно связать Великобританию и США трансатлантическим телеграфным кабелем удалось только к 5 августа 1858 года, однако уже в сентябре связь была утеряна. Предполагается, что причиной стали нарушение гидроизоляции кабеля и последующая его коррозия и обрыв. Стабильная связь между Старым и Новым светом была установлена только в 1866 году. В 1870 году был проложен кабель в Индию, что позволило связать напрямую Лондон и Бомбей. В эти проекты были вовлечены одни из лучших умов и промышленников того времени: Уильям Томсон (будущий великий лорд Кельвин), Чарльз Уитстон, братья Сименсы. Как видно, почти 150 лет назад люди активно занимались созданием по протяженности в тысячи километров линий связи. И на этом прогресс, понятное дело, не остановился. Однако, телефонная связь с Америкой была установлена только в 1956 году, а работы длились почти 10 лет. Подробно об укладке первого трансатлантического телеграфного и телефонного кабеля можно прочитать в книге Артура Кларка «Голос через океан» .

Устройство кабеля

Несомненный интерес представляет непосредственное устройство кабеля, который будет работать на глубине в 5-8 километров включительно.
Стоит понимать, что глубоководный кабель должен иметь следующий ряд базовых характеристик:
  • Долговечность
  • Быть водонепроницаемым (внезапно!)
  • Выдерживать огромное давление водных масс над собой
  • Обладать достаточной прочностью для укладки и эксплуатации
  • Материалы кабеля должны быть подобраны так, чтобы при механических изменениях (растяжении кабеля в ходе эксплуатации/укладки, например) не изменялись его рабочие характеристики

Рабочая часть рассматриваемого нами кабеля, по большому случаю, ни чем особым от обычной оптики не отличается. Вся суть глубоководных кабелей заключена в защите этой самой рабочей части и максимального увеличения срока его эксплуатации, что видно из схематического рисунка справа. Давайте по порядку разберем назначение всех элементов конструкции.

Полиэтилен - внешний традиционный изоляционный слой кабеля. Данный материал является отличным выбором для прямого контакта с водой, так как обладает следующими свойствами:
Устойчив к действию воды, не реагирует со щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже с концентрированной серной кислотой.

Мировой океан содержит в себе, фактически, все элементы таблицы Менделеева, а вода является универсальным растворителем. Использование такого распространенного в хим. промышленности материала как полиэтилен является логичным и оправданным, так как в первую очередь инженерам было необходимо исключить реакцию кабеля и воды, тем самым избежать его разрушения под воздействием окружающей среды. Полиэтилен использовался в качестве изолирующего материала в ходе прокладки первых межконтинентальных линий телефонной связи в середине XX века.
Однако, в силу своей пористой структуры полиэтилен не может обеспечить полной гидроизоляции кабеля, поэтому мы переходим к следующему слою.

Майларовая пленка - синтетический материал на основе полиэтилентерефталата . Имеет следующие свойства:
Не имеет запаха, вкуса. Прозрачный, химически неактивный, с высокими барьерными свойствами (в том числе и ко многим агрессивным средам), устойчивый к разрыву (в 10 раз прочнее полиэтилена), износу, удару. Майлар (или в СССР Лавсан) широко используется в промышленности, упаковке, текстиле, космической промышленности. Из него даже шьют палатки. Однако, использование данного материала ограничено многослойными пленками из-за усадки при термосваривании.

После слоя майларовой пленки можно встретить армирование кабеля различной мощности, в зависимости от заявленных характеристик изделия и его целевого назначения. В основном используется мощная стальная оплетка для придания кабелю достаточной жесткости и прочности, а так же для противодействия агрессивным механических воздействиям из вне. По некоторым данным, блуждающим в сети, ЭМИ исходящее от кабелей может приманивать акул, которые перегрызают кабели. Так же на больших глубинах кабель просто укладывается на дно, без копания траншеи и его могут зацепить рыболовецкие суда своими снастями. Для защиты от подобных воздействий кабель и армируется стальной оплеткой. Используемая в армировании стальная проволока предварительно оцинковывается. Усиление кабеля может происходить в несколько слоев. Основной задачей производителя в ходе этой операции является равномерность усилия в ходе намотки стальной проволоки. При двойном армировании намотка происходит в разных направлениях. При не соблюдении баланса в ходе данной операции кабель может самопроизвольно скручиваться в спираль, образуя петли.

В результате этих мероприятий масса погонного километра может достигать нескольких тонн. «Почему не легкий и прочный алюминий?» - спросят многие. Вся проблема в том, что на воздухе алюминий имеет стойкую пленку окисла, но при соприкосновении с морской водой данный металл может вступать в интенсивную химическую реакцию с вытеснением ионов водорода, которые оказывают губительное влияние на ту часть кабеля, ради которой все затевалось - оптоволокно. Поэтому используют сталь.

Алюминиевый водный барьер , или слой алюмополиэтилена используется как очередной слой гидроизоляции и экранирования кабеля. Алюмополиэтилен представляет собой комбинацию из фольги алюминиевой и полиэтиленовой пленки, соединенных между собой клеевым слоем. Проклейка может быть как односторонней, так и двухсторонней. В масштабах всей конструкции алюмополиэтилен выглядит почти незаметным. Толщина пленки может варьироваться от производителя к производителю, но, к примеру, у одного из производителей на территории РФ толщина конечного продукта составляет 0.15-0.2 мм при односторонней проклейке.

Слой поликарбоната вновь используется для усиления конструкции. Легкий, прочный и стойкий к давлению и ударам, материал широко используется в повседневных изделиях, например, в велосипедных и мотоциклетных шлемах, также применяется в качестве материала при изготовлении линз, компакт-дисков и светотехнических изделий, листовой вариант используется в строительстве как светопропускающий материал. Обладает высоким коэффициентом теплового расширения . Применение ему было найдено и в производстве кабелей.

Медная, или алюминиевая трубка входит в состав сердечника кабеля и служит для его экранирования. Непосредственно в эту конструкцию укладываются другие медные трубки с оптоволокном внутри. В зависимости от конструкции кабеля, трубок может быть несколько и они могут быть переплетены между собой различным образом. Ниже четыре примера организации сердечника кабеля:

Укладка оптоволокна в медные трубки которые заполнены гидрофобным тиксотропным гелем, а металлические элементы конструкции используются для организации дистанционного электропитания промежуточных регенераторов - устройств, осуществляющих восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения.

В разрезе получается что-то похожее на это:

Производство кабеля

Особенностью производства оптических глубоководных кабелей является то, что чаще всего оно располагается вблизи портов, как можно ближе к берегу моря. Одной из основных причин подобного размещения является то, что погонный километр кабеля может достигать массы в несколько тонн, а для сокращения необходимого кол-ва сращиваний в процессе укладки производитель стремиться сделать кабель как можно более длинным. Обычной нынче длинной для такого кабеля считается 4 км, что может вылиться в, примерно, 15 тонн массы. Как можно понять из вышеуказанного, транспортировка такой бухты глубоководного ОК не самая простая логистическая задача для сухопутного транспорта. Обычные для намотки кабелей деревянные барабаны не выдерживают описанной ранее массы и для транспортировки ОК на суше, к примеру, приходится выкладывать всю строительную длину «восьмеркой» на спаренных железнодорожных платформах, чтобы не повредить оптоволокно внутри конструкции.

Укладка кабеля

Казалось бы, имея такой мощный с виду продукт можно грузить его на корабли и сбрасывать в морскую пучину. Реальность же немного иная. Прокладка маршрута кабеля - это длительный и трудоемкий процесс. Маршрут должен быть, само собой, экономически выгодным и безопасным, так как использование различных способов защиты кабеля приводит к увеличению стоимости проекта и увеличивает срок его окупаемости. В случае прокладки кабеля между разными странами, необходимо получить разрешение на использование прибрежных вод той или иной страны, необходимо получить все необходимые разрешения и лицензии на проведение кабелеукладочных работ. После проводится геологическая разведка, оценка сейсмической активности в регионе, вулканизма, вероятность подводных оползней и других природных катаклизмов в регионе, где будут проводится работы и, в последующем, лежать кабель. Так же важную роль играют прогнозы метеорологов, дабы сроки работ не были сорваны. Во время геологической разведки маршрута учитывается широкий спектр параметров: глубина, топология дна, плотность грунта, наличие посторонних объектов, типа валунов, или затонувших кораблей. Так же оценивается возможное отклонение от первоначального маршрута, т.е. возможное удлинение кабеля и увеличение стоимости и продолжительности работ. Только после проведения всех необходимых подготовительных работ кабель можно загружать на корабли и начинать укладку.

Собственно, из гифки процесс укладки становится предельно ясным.

Прокладка оптоволоконного кабеля по морскому/океаническому дну проходит непрерывно из точки А в точку Б. Кабель укладывается в бухты на корабли и транспортируется к месту спуска на дно. Выглядят эти бухты, например, так:

Если Вам кажется, что она маловата, то обратите внимание на это фото:

После выхода корабля в море остается исключительно техническая сторона процесса. Команда укладчиков при помощи специальных машин разматывает кабель с определенной скоростью и, сохраняя необходимое натяжение кабеля за счет движения корабля продвигается по заранее проложенному маршруту.

Выглядит со стороны это так:

При каких-либо проблемах, обрывах, или повреждениях на кабеле предусмотрены специальные якоря, которые позволяют поднять его к поверхности и отремонтировать проблемный участок линии.

И, в итоге, благодаря всему этому мы можем с комфортом и на высокой скорости смотреть в интернете фото и видео с котиками со всего мира.

В комментариях к статье о проекте Google пользователь

Получил от королевы Виктории поздравительную телеграмму и отправил ей ответное послание. Первый официальный обмен сообщениями по недавно проложенному трансатлантическому телеграфному кабелю был отмечен парадом и фейерверком над нью-йоркской ратушей. Празднества были омрачены случившимся по этой причине пожаром, а через 6 недель кабель вышел из строя. Правда, и до этого работал он не очень хорошо - послание королевы передавалось в течение 16,5 часа.

От идеи до проекта

Первое предложение, касающееся телеграфа и Атлантического океана, представляло собой ретрансляционную схему, в которой сообщения, доставляемые кораблями, должны были рассылаться телеграфом из Ньюфаундленда в остальную часть Северной Америки. Проблемой являлось строительство телеграфной линии по сложному рельефу острова.

Обращение за помощью инженера, отвечающего за проект, привлекло впоследствии ставшего незаменимым для проекта трансатлантического кабеля американского бизнесмена и финансиста Сайруса Филда. В ходе работы он пересек океан более 30 раз. Несмотря на неудачи, с которыми столкнулся Филд, его энтузиазм привел к успеху.

Бизнесмен немедленно ухватился за идею трансатлантической телеграфной передачи. В отличие от наземных систем, в которых импульсы регенерировались реле, трансокеанская линия должна была обойтись одним кабелем. Филд получил заверения в возможности передачи сигнала на большие расстояния от и Майкла Фарадея.

Уильям Томпсон дал этому теоретическое обоснование, в 1855 г. опубликовав закон обратных квадратов. Время нарастания импульса, проходящего через кабель без индуктивной нагрузки, определяется постоянной времени RC проводника длиной L, равной rcL 2 , где r и с - сопротивление и емкость на единицу длины соответственно. Томсон также внес вклад в технологию работы подводного кабеля. Он усовершенствовал зеркальный гальванометр, в котором малейшие отклонения зеркала, вызванные током, усиливались проекцией на экран. Позже он изобрел устройство, регистрирующее сигналы чернилами на бумаге.

Технология подводных кабелей была усовершенствована после появления в 1843 году в Англии смола дерева, произрастающего на Малайском полуострове, представляла собой идеальный изолятор, поскольку была термопластичной, смягчалась при нагреве и возвращалась в твердую форму после охлаждения, облегчая изоляцию проводников. В условиях давления и температуры на дне океана ее изоляционные свойства улучшались. Гуттаперча оставалась основным материалом изоляции подводных кабелей до открытия полиэтилена в 1933 году.

Проекты Филда

Сайрус Филд возглавлял 2 проекта, первый из которых потерпел неудачу, а второй завершился успехом. В обоих случаях кабели состояли из одного 7-жильного провода, окруженного гуттаперчей и бронированного стальной проволокой. Защиту от коррозии обеспечивала просмоленная пенька. Морская миля кабеля образца 1858 г. весила 907 кг. Трансатлантический кабель 1866 г. был тяжелее, 1622 кг/миля, но поскольку его объем был больше, то в воде он весил меньше. Прочность на растяжение составляла 3 т и 7,5 т соответственно.

Все кабели имели один проводник с возвратом по воде. Хотя у морской воды сопротивление меньше, она подвержена блуждающим токам. Питание осуществлялось с помощью химических источников тока. Например, проект 1858 г. имел 70 элементов по 1,1 В каждый. Эти уровни напряжения в сочетании с неправильным и неосторожным хранением привели к выходу глубоководного трансатлантического кабеля из строя. Применение зеркального гальванометра позволило в последующих линиях использовать более низкие напряжения. Поскольку сопротивление составляло приблизительно 3 Ом на морскую милю, при расстоянии 2000 миль могли проводиться токи порядка миллиампера, достаточные для зеркального гальванометра. В 1860 годах был введен биполярный телеграфный код. Точки и штрихи кода Морзе были заменены импульсами противоположной полярности. Со временем были разработаны более сложные схемы.

Экспедиции 1857-58 и 65-66 гг.

Для прокладки первого трансатлантического кабеля путем выпуска акций было собрано 350 000 фунтов стерлингов. Американское и британское правительства гарантировали возврат инвестиций. Первая попытка была предпринята в 1857 г. Для перевозки кабеля потребовались 2 парохода, «Агамемнон» и «Ниагара». Электрики одобрили способ, при котором один корабль укладывал линию с береговой станции с последующим соединением второго конца с кабелем на другом судне. Преимущество заключалось в том, что при этом сохранялась непрерывная электрическая связь с берегом. Первая попытка закончилась неудачей, когда на расстоянии 200 миль от берега вышло из строя оборудование для укладки кабеля. Он был потерян на глубине 3,7 км.

В 1857 году главным инженером «Ниагары» Уильямом Эвереттом было разработано новое оборудование для укладки кабеля. Заметным улучшением стал автоматический тормоз, который срабатывал, когда натяжение достигало определенного порога.

После сильного шторма, который чуть не потопил «Агамемнон», корабли встретились посреди океана и 25 июня 1858 г. начали прокладывать трансатлантический кабель снова. «Ниагара» двигалась на запад, а «Агамемнон» - на восток. Было сделано 2 попытки, прерванные повреждением кабеля. Корабли вернулись в Ирландию за его заменой.

17 июля флот снова отправился на встречу друг с другом. После незначительных сбоев операция прошла успешно. Идя с постоянной скоростью в 5-6 узлов, 4 августа «Ниагара» вошла в Тринити-Бэй о. Ньюфаундленд. В тот же день «Агамемнон» прибыл в Бухту Валентия в Ирландии. Королева Виктория отправила описанное выше первое приветственное сообщение.

Экспедиция 1865 г. завершилась неудачей в 600 милях от Ньюфаундленда, и только попытка в 1866 г. была успешной. Первое сообщение по новой линии было отправлено из Ванкувера в Лондон 31 июля 1866 г. Кроме того, был найден конец кабеля, потерянного в 1865 г., и линия была также успешно завершена. Скорость передачи составила 6-8 слов в минуту при стоимости 10$/слово.

Телефонная связь

В 1919 г. американская компания AT&T инициировала исследование возможности прокладки трансатлантического телефонного кабеля. В 1921 г. была проложена глубоководная телефонная линия между Ки-Уэстом и Гаваной.

В 1928 г. было предложено проложить кабель без повторителей с единственным голосовым каналом через Атлантический океан. Высокая стоимость проекта (15 млн $) в разгар Великой депрессии, а также усовершенствования в области радиотехнологий прервали проект.

К началу 1930 годов развитие электроники позволило создать подводную кабельную систему с повторителями. Требования к конструкции промежуточных усилителей линии связи были беспрецедентными, поскольку устройства должны были бесперебойно работать на дне океана в течение 20 лет. К надежности компонентов, в частности электронных ламп, предъявлялись строгие требования. В 1932 г. уже были электролампы, которые успешно прошли испытание в течение 18 лет. Использовавшиеся радиотехнические элементы значительно уступали лучшим образцам, но были очень надежными. В итоге ТАТ-1 проработала 22 года, и ни одна лампа не вышла из строя.

Еще одну проблему представляла укладка усилителей в открытом море на глубине до 4 км. При остановке корабля для сброса повторителя на кабеле со спиральной броней могут появиться перегибы. В итоге был использован гибкий усилитель, который мог укладываться оборудованием, предназначенным для телеграфного кабеля. Однако физические ограничения гибкого ретранслятора ограничивали его пропускную способность 4-проводной системой.

Почта Британии разработала альтернативный подход с жесткими ретрансляторами гораздо большего диаметра и пропускной способностью.

Реализация TAT-1

Проект был возобновлен после Второй мировой войны. В 1950 году гибкая технология усилителя была протестирована системой, связывающей Ки-Уэст и Гавану. Летом 1955 и 1956 г. первый трансатлантический был проложен между Обаном в Шотландии и Кларенвиллем на о. Ньюфаундленд, значительно севернее существующих телеграфных линий. Каждый кабель имел длину около 1950 морских миль и насчитывал 51 повторитель. Их число определялось максимальным напряжением на клеммах, которое могло бы использоваться для питания, не влияя на надежность высоковольтных компонентов. Напряжение составляло +2000 В на одном конце и -2000 В на другом. Полоса пропускания системы, в свою очередь, определялась количеством повторителей.

В дополнение к повторителям было установлено 8 подводных уравнителей на восточно-западной линии и 6 на западно-восточной. Они корректировали накопленные сдвиги в полосе частот. Хотя общие потери в полосе пропускания 144 кГц составляла 2100 дБ, использование уравнителей и повторителей сократило это значение до менее 1 дБ.

Начало работы TAT-1

В первые 24 ч после запуска 25 сентября 1956 г. было сделано 588 звонков из Лондона и США и 119 из Лондона в Канаду. ТАТ-1 сразу утроила пропускную способность трансатлантической сети. Полоса частот кабеля составляла 20-164 кГц что позволяло иметь 36 голосовых каналов (по 4 кГц), 6 из которых были разделены между Лондоном и Монреалем и 29 - между Лондоном и Нью-Йорком. Один канал предназначался для телеграфа и сервисного обслуживания.

Система также включала наземную связь через Ньюфаундленд и подводную с Новой Шотландией. Эти две линии состояли из одного кабеля длиной 271 морских миль с 14 жесткими репитерами, спроектированными почтой Великобритании. Общая емкость составила 60 голосовых каналов, 24 из которых связывали Ньюфаундленд и Новую Шотландию.

Дальнейшие усовершенствования TAT-1

Линия TAT-1 обошлась в 42 млн долларов США. Цена в 1 млн $ за канал стимулировала разработку терминального оборудования, которое бы использовало пропускную способность более эффективно. Количество голосовых каналов в стандартном диапазоне частот 48 кГц было увеличено с 12 до 16 путем сокращения их ширины с 4 до 3 кГц. Другой инновацией была временная интерполяция речи (TASI), разработанная в Bell Labs. TASI позволила удвоить количество голосовых цепей благодаря паузам в речи.

Оптические системы

Первый трансокеанский оптический кабель ТАТ-8 вступил в строй в 1988 г. Повторители регенерировали импульсы путем преобразования оптических сигналов в электрические и обратно. Две рабочие пары волокон работали со скоростью 280 Мбит/с. В 1989 г. благодаря этому трансатлантическому интернет-кабелю компания IBM согласилась финансировать линию уровня Т1 между Корнуэльским университетом и ЦЕРН, что значительно улучшило связь между американской и европейской частями раннего Интернета.

К 1993 г. во всем мире эксплуатировалось более 125 тыс. км TAT-8. Эта цифра почти соответствовала общей длине аналоговых подводных кабелей. В 1992 г. вступила в строй TAT-9. Скорость на волокно была увеличена до 580 Мбит/с.

Технологический прорыв

В конце 1990 годов развитие оптических усилителей, легированных эрбием, привело к квантовому скачку в качестве подводных кабельных систем. Световые сигналы с длиной волны около 1,55 мкм стало возможным усиливать напрямую, и пропускная способность перестала ограничиваться скоростью электроники. Первой оптически усиленной системой, проведенной через Атлантический океан, была TAT 12/13 в 1996 году. Скорость передачи на каждой из двух пар волокон составила 5 Гбит/с.

Современные оптические системы позволяют передавать такие большие объемы данных, что избыточность имеет решающее значение. Как правило, современные волоконно-оптические кабели, такие как TAT-14, состоят из 2-х отдельных трансатлантических кабелей, которые являются частью кольцевой топологии. Две другие линии соединяют береговые станции с каждой стороны Атлантического океана. Данные направляются по кольцу в обоих направлениях. В случае обрыва кольцо самовосстанавливается. Трафик переводится на запасные пары волокон в рабочих кабелях.

Современный мир связан электронной почтой и Интернетом, телефоном и факсом и все это идет не только через спутник. Пять из каждых шести звонков и сообщений идут по проводной магистрали.

Глубоко на дне океанов лежат множество многожильных кабелей, толщина одной жилы с человеческий волос, они называются оптоволокном и миллионы километров таких кабелей проложены по изломанному морскому дну. Эти кабели странным образом привлекают голодных акул, а результат - повреждение мировой паутины.

Когда нарушаются линии, вызывают одно из самых продвинутых кораблей и судов мира «Atlantic Guardian». Без него наш опутанный проводами мир не смог бы существовать. Его экипаж ответственен за обслуживание 40 кабельных магистралей между Англией и Нью-Джерси, Ньюфаундлендом и Францией, Рок-Айлендом и Испанией. Скорость и надежность - отличительные черты этого судна, независимо от степени волнения Атлантики. Миллионы долларов теряются из-за простоя сети, и команда испытывает огромное психологическое давление во время выполнения заданий.

Кабельное судно было построено на верфи «Vander Giessen Yards» в Роттердаме Голландия в 2001 году, и принадлежит компании «Global Marine Systems». Его функцией является прокладка и дальнейшее обслуживание оптоволоконных линий связи. Стоимость проекта 50 миллионов долларов. Это судно не боится волн Северной Атлантики.

На мелководье кабель повреждается рыболовецкими судами, которые тянут трал или другие снасти. Кроме этого большие корабли бросают якорь там, где не должны этого делать и тоже наносят повреждения кабелю. Подводные течения, проливы и отливы вызывают перетирания, которые, со временем, рвут кабель. Судно оборудовано двумя азиподами, что дает возможность с легкостью маневрировать в пространстве, кроме этого им даже приятно управлять. Практически ничего не изменилось за несколько десятилетий, только лишь оболочка и начинки кабеля.

Кабель поднимают при помощи кранов, лебедок и блоков. Это может показаться самой обычной операцией, но это не так. Судно прибывает в ориентировочную точку повреждения, по координатам, полученным со спутника. Затем выпускает "мягкий крюк" и цепляет кабель со дна. Потом вниз опускается режущий крюк, пока корабль идет вдоль кабеля, его острые лезвия разрезают его, так как дефектный кабель нельзя поднять без разреза. После разреза судно перемещается, чтобы снова зацепить за одну сторону разрезанного кабеля и поднять его на борт. Подняв кабель, его закрепляют и тестировуют, чтобы убедится в исправности от места поломки. Конец кабеля запечатывают и выбрасывают за борт, закрепив буй, чтобы было легче найти. Другую сторону кабеля сматывают и проверяют, находя повреждение. В момент проведения каждой операции, судно автоматически подруливается, оставаясь на месте в заданной точке, благодаря спутниковой системе навигации (GPS), установленной на судне. В комплексе это единая система датчиков и рулей корабля, позволяющая судну сохранять устойчивость во время волнения или двигаться в заданном направлении. Все это контролируется компьютером. На борту есть и робот с дистанционным управлением «Atlas-1». Он способен двигаться на гусеничном ходу по морскому дну со скоростью 4 км/ч, отыскивать и откапывать кабель, а затем посылать на борт изображение высокого разрешения для принятия решения. Робот «Atlas-1» оснащен набором инструментов, различных камер и фонарей – это «глаза» пилота на морском дне.

На судне есть место со специализированными условиями и оборудованием, где спаивают микроскопические жилы оптоволоконного кабеля. Людей, которые там работают, называют «скоросшивателями», хотя на устранение повреждений им необходимо около суток. После всего этого кабель соединяется в муфту и тестируется между двумя узловыми станциями. Если тест передачи данных проходит успешно, кабель с особой осторожностью снова опускают в воду. Использование робота позволяет зарывать кабель на дне океана. Он подаёт мощную струю, которая формирует траншею. А уже в эту траншею затем опускается кабель.
Пока ещё не разработаны беспилотные аппараты для ремонта кабеля, всегда найдется тяжелая, но такая полезная работа для кабельного судна «Atlantic Guardian».

Технические данные кабельного судна «Atlantic Guardian» :
Длина - 120 м;
Ширина - 18 м;
Водоизмещение - 3250 тонн;
Силовая установка - дизель-электрическая, мощность 9656 л. с.;
Скорость - 15 узлов;
Автономность - 50 суток;

То, что вы видите выше, это подводный кабель связи.

Диаметром он 69 миллиметров, и именно он переносит 99% из всего международного трафика связи (т.е. интернет, телефония и прочие данные). Соединяет он все континенты нашей планеты, за исключением Антарктиды. Эти удивительные волоконно-оптические кабели пересекают все океаны, и длинной они сотни тысяч, да что говорить, миллионы километров.


Карта Мира подводной кабельной сети

Это «CS Cable Innovator», он специально разработан для прокладки волоконно-оптического кабеля и является крупнейшим в своем роде кораблем в мире. Построен он в 1995 году в Финляндии, он 145 метров в длину, а шириной он 24 метра. Он способен перевозить до 8500 тонн волоконно-оптического кабеля. Корабль имеет 80 кают, из которых 42 — каюты офицеров, 36 — каюты экипажа и две каюты класса люкс.
Без технического обслуживания и дозаправки он может трудиться 42 дня, а если его будет сопровождать корабль поддержки, то все 60.

Первоначально, подводные кабели были простыми соединения типа точка-точка. Сейчас же подводные кабели стали сложнее и они могут делиться и разветвляться прямо на дне океана.

С 2012 года провайдера был успешно продемонстрирован подводный канал передачи данных с пропускной способностью в 100 Гбит/с. Тянется он через весь Атлантический океан и длина его равна 6000 километрам. Представьте себе, что три года назад пропускная способность меатлантического канала связи была в 2,5 раза меньше и была равна 40 Гбит/с. Сейчас корабли подобные «CS Cable Innovator» постоянно трудятся дабы обеспечивать нас всё быстрым межконтинентальным интернетом.

Сечение подводного кабеля связи

1. Полиэтилен
2. Майларовое покрытие
3. Многожильные стальные провода
4. Алюминиевая защита от воды
5. Поликарбонат
6. Медная или алюминиевая трубка
7. Вазелин
8. Оптические волокна

По дну моря оптоволоконный кабель укладывается за один раз от одного берега до другого. В некоторых случаях для организации ВОЛС по дну моря/океана требуется несколько кораблей, так как необходимое количество кабеля на одно судно может не поместиться.

Подводные оптоволоконные линии связи делятся на репитерные (с использованием подводных оптических усилителей) и безрепитерные. Первые из них подразделяются на прибрежные линии связи и магистральные трансокеанские (межконтинентальные). Безрепитерные линии связи делятся на прибрежные линии связи и линии связи между отдельными пунктами (между материком и островами, материком и буровыми станциями, между островами). Существуют и линии связи с применением удаленной оптической накачки.

Кабели ВОЛС для прокладки по дну, как правило, состоят из оптического сердечника, токоведущей жилы и внешних защитных покровов. Кабели для безрепитерных оптоволоконных линий имеют такую же структуру, но у них токоведущая жила отсутствует.

Особые проблемы прокладки ВОЛС через водные препятствия (под)водой связаны с ремонтом морских линий связи. Ведь, лежа долгое время на морском дне, кабель становится практически невидимым. Кроме того, течения могут отнести оптоволоконный кабель от места его первоначальной прокладки (даже на многие километры), а рельеф дна сложен и разнообразен. Повреждения кабелю могут наноситься якорями кораблей и представителями морской фауны. Возможно также отрицательное воздействие на него при дноуглубительных работах, установке труб и бурении, а также при подводных землетрясениях и оползнях.

Вот так он выглядит на дне. Каковы экологические последствия прокладки телекоммуникационных кабелей на морском дне? Как это влияет на дно океана и животных, которые там живут? Хотя буквально миллионы километров кабелей связи были размещены на дне моря в течение последнего столетия, это никак не повлияло на жизнь подводных обитателей. Согласно недавнему исследованию, кабель оказывает лишь незначительные воздействия на животных, живущих и находится в пределах морского дна. На фотографии выше мы видим разнообразие морской жизни рядом с подводным кабелем, который пересекает континентальный шельф Half Moon Bay.
Тут кабель всего лишь 3,2 см. толщины.

Многие опасались, что кабельное телевидение загрузит каналы, но на самом деле оно увеличило нагрузку всего лишь на 1 процент. Причем кабельное телевидение, которое может идти по подводным волокнам уже сейчас имеет пропускную способность в 1 Терабит, в то время как спутники дают в 100 раз меньше. И если хотите купить себе такой межатлантический кабель, то он вам обойдется в 200-500 миллионов долларов.

А вот сейчас я вам расскажу про первый кабель через океан. Вот слушайте …

Вопрос о том, как наладить электрическую связь через огромные просторы Атлантического океана, разделяющего Европу и Америку, волновал умы ученых, техников и изобретателей уже с начала сороковых годов. Еще в те времена американский изобретатель пишущего телеграфа Самуэль Морзе высказал уверенность в том, что возможно проложить телеграфный «провод по дну Атлантического океана».

Первая мысль о подводном телеграфировании возникла у английского физика Уитстона, который в 1840 году предложил свой проект соединения Англии и Франции телеграфной связью. Его идея была, однако, отвергнута как неосуществимая. К тому же в то время не умели еще так надежно изолировать провода, чтобы они могли проводить электрический ток, находясь на дне морей и океанов.

Положение изменилось после того, как в Европу доставили вновь открытое в Индии вещество — гуттаперчу, и германский изобретатель Вернер Сименс предложил покрывать ею провода для изоляции. Гуттаперча как нельзя более подходит для изоляции именно подводных проводов, ибо, окисляясь и ссыхаясь в воздухе, она нисколько не изменяется в воде и может сохраняться там неопределенно долгое время. Так был решен важнейший вопрос об изоляции подводных проводов.

23 августа 1850 года в море вышло для прокладки кабеля специальное судно «Голиаф» с буксирным пароходом.

Путь их лежал от Дувра к берегам Франции. Впереди шло военное судно «Вигдеон», указывавшее «Голиафу» и буксиру заранее определенный путь, отмеченный буями с развевавшимися на них флагами.

Все шло хорошо. Установленный на борту парохода цилиндр, на который был намотан кабель, равномерно разматывался, и провод погружался в воду. Через каждые 15 минут к проводу подвешивали груз в 10 килограммов 4 свинца, чтобы он погружался на самое дно. На четвертые сутки «Голиаф> достиг французского берега, кабель был выведен на сушу я соединен с телеграфным аппаратом. В Дувр по подводному кабелю была послана приветственная телеграмма из 100 слов. Огромная толпа, собравшаяся в Дувре у конторы телеграфной компании и с нетерпением ожидавшая вестей из Франции, с большим воодушевлением приветствовала рождение подводной телеграфии.

Увы, эти восторги оказались преждевременными! Первая телеграмма, переданная по подводному кабелю с французского берега в Дувр, оказалась и последней. Кабель внезапно отказался работать. Только через некоторое время узнали причину столь внезапной порчи. Оказалось, что какой-то французский рыбак, закидывая невод, случайно зацепил кабель и вырвал из него кусок.

Но все же, несмотря на первую неудачу, даже самые ярые скептики поверили в подводную телеграфию. Джон Бретт организовал в 1851 году второе акционерное общество для продолжения дела. На этот раз был уже учтен опыт первой прокладки, и новый кабель был устроен по совершенно другому образцу. Этот кабель отличался от первого: он весил 166 тони, в то время как вес первого кабеля не превышал 14 тонн.

На этот раз предприятие увенчалось полным успехом. Специальное судно, укладывавшее кабель, прошло без особых затруднений путь из Дувра до Кале, где конец кабеля был соединен с телеграфным аппаратом, установленным в палатке прямо на прибрежном утесе.

Через год, 1 ноября 1852 года было установлено прямое телеграфное сообщение между Лондоном и Парижем. Вскоре Англия была соединена подводным кабелем с Ирландией, Германией, Голландией и Бельгией. Затем телеграф связал Швецию с Норвегией, Италию - с Сардинией и Корсикой. В 1854-1855 гг. был проложен подводный кабель через Средиземное и Черное моря. По этому кабелю командование союзных войск, осаждающих Севастополь, сносилось со своими правительствами.

После успеха этих первых подводных линий вопрос о прокладке кабеля через Атлантический океан для соединения Америки с Европой телеграфной связью был поставлен уже практически. За это грандиозное дело взялся энергичный американский предприниматель Сайрос Филд, образовавший в 1856 году «Трансатлантическую компанию».

Невыясненным был, в частности, вопрос о том, может ли электрический ток пробежать огромное расстояние в 4-5 тысяч километров, отделяющее Европу от Америки. Ветеран телеграфного дела Самуэль Морзе ответил на этот вопрос утвердительно. Для большей уверенности Филд обратился к английскому правительству с просьбой соединить в одну линию все имевшиеся в его распоряжении провода и пропустить через них ток. В ночь на 9 декабря 1856 года все воздушные, подземные и подводные провода Англии и Ирландии были соединены в одну непрерывную цепь длиной в 8 тысяч километров. Ток легко прошел через громадную цепь, и с этой стороны больше сомнений не было.

Собрав все необходимые предварительные сведения, Филд приступил в феврале 1857 года к изготовлению кабеля. Кабель состоял из семипроволочного медного каната с гуттаперчевой оболочкой. Жилы его были обложены просмоленной пенькой, а снаружи кабель был еще обвит 18 шнурами из 7 железных проволок каждый. В таком виде кабель длиной в 4 тысячи километров весил три тысячи тонн. Это значит, что для его перевозки по железной дороге понадобился бы состав из 183 товарных вагонов.

История прокладки кабеля изобылует массой непредвиденных обстоятельств. Он несколько раз обрывался, спаянные куски «не желали» доставлять енергию к месту назначения.

Неутомимый Сайрое Филд организовал компанию, чтобы еще раз попытаться проложить кабель через неподатливый океан. Изготовленный компанией новый кабель состоял из семипроволочного шнура, изолированного четырьмя слоями. Снаружи кабель был покрыт слоем «просмоленной пеньки и обмотан десятью стальными проволоками. Для прокладки кабеля было приспособлено специальное судно «Грейт Истерн» — в прошлом прекрасно оборудованный океанский пароход, не окупавший расходов по пассажирскому движению и снятый с рейсов.

Уже на другой день после отплытия с Грейт Истерн электротехники обнаружили, что по кабелю прекратилось прохождение тока. Пароход, проделав чрезвычайно сложный и опасный маневр, во время которого чуть было не произошел разрыв кабеля, сделал полный поворот и стал обратно наматывать уже спущенный на дно кабель. Вскоре, когда кабель стал подниматься из воды, все заметили причину порчи: через кабель был проткнут острый железный прут, задевший гуттаперчевую изоляцию. Кабель портился еще дважды. Когда стали поднимать обратно кабель с глубины 4 тысяч метров, он от сильного натяжения оборвался и утонул.

Компания изготовила новый кабель, значительно улучшенный по сравнению с прежним. «Грейт Истерн» был оборудован новыми машинами для укладки кабеля, а также специальными приспособлениями, предназначенными для подъема кабеля со дна. Новая экспедиция отправилась в путь 7 июля 1866 года. На этот раз полный успех увенчал отважное предприятие: «Прейт Истерн» достиг американского берега, проложив, наконец, телеграфный кабель через океан. Этот «кабель действовал почти без перерыва в течение семи лет.

Третий трансатлантический кабель был проложен англоамериканской телеграфной компанией в 1873 году. Он соединял Пти-Минон возле Бреста во Франции с Ньюфаундлендом. В течение последующих 11 лет та же компания проложила между Валенсией и Ньюфаундлендом еще четыре кабеля. В 1874 году была построена телеграфная линия, соединявшая Европу с Южной Америкой.

В 1809 году, то есть через три года после прокладки подводного кабеля через Атлантический океан, была завершена постройка еще одного грандиозного телеграфного предприятия — Индо-европейской линии. Эта линия соединила двойным проводом Калькутту с Лондоном. Длина ее — 10 тысяч километров.

Значительно позже, чем через Атлантику, был проложен телеграфный кабель через весь Великий океан. Так телеграфная сеть опутывала весь земной шар. Благодаря этим линиям практически мгновенно действует всемирная паутина – Интернет.

А я пока напомню вам и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -